Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-16T18:18:49.144Z Has data issue: false hasContentIssue false

To the Influence of the Wafer Edge in RTP

Published online by Cambridge University Press:  21 February 2011

Jens-Peter Zöllner
Affiliation:
TU Ilmenau, Institut für Festköperelektronik, Postfach 327, O-6300 Ilmenau, Germany.
I. Patzschke
Affiliation:
TU Ilmenau, Institut für Festköperelektronik, Postfach 327, O-6300 Ilmenau, Germany.
V. Pietzuch
Affiliation:
TU Ilmenau, Institut für Festköperelektronik, Postfach 327, O-6300 Ilmenau, Germany.
J. Pezoldt
Affiliation:
TU Ilmenau, Institut für Festköperelektronik, Postfach 327, O-6300 Ilmenau, Germany.
G. Eichhorn
Affiliation:
TU Ilmenau, Institut für Festköperelektronik, Postfach 327, O-6300 Ilmenau, Germany.
Get access

Abstract

The goal in Rapid Thermal Processing is the realization of homogeneous and stable temperature distribution across the wafer.

Due to the wafer edge an additional heat loss occurs, which leads to temperature decrease near the wafer boundary. This can be the origin for layer thickness inhomogenities and defect generation. For successful compensation it is necessary to know why such a temperature gradient exists.

The heat transfer at the wafer edge was investigated by using computer simulation.

The results confirmed by experimental data in the pressure range of 1.. 760 Torr are discussed and criteria for the compensation of the temperature gradient near the wafer edge are developed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Sedwick, T.O., J.Electrochem.Soc. 130,484(1983).CrossRefGoogle Scholar
[2] Singh, R., J.Appl.Phys. 63,R59(1988).CrossRefGoogle Scholar
[3] Gelpey, J.C., Stump, P.O., Smith, J.W., Material Research Society Proc. 52,199(1986).CrossRefGoogle Scholar
[4] Ang, S.T. and Wortman, J.J., J.Electrochem.Soc. 133,2361(1986).CrossRefGoogle Scholar
[5] d'Heurle, F.M., Hodgson, R.T., and Ting, C.Y., Rapid Thermal Processing, Material Research Society Proc. 52, 261 (1985).CrossRefGoogle Scholar
[6] Moslehi, M.M., Davis, C., and Bowling, A., TI Technical Journal, 44 (1992).Google Scholar
[7] Kakoschke, R., Bulmann, E., and Föll, H., Appl.Phys. A5O,141(1990).CrossRefGoogle Scholar
[8] Kakoschke, R., BuBmann, E., and Föll, H., Appl.Phys. A52,52(1991).CrossRefGoogle Scholar
[9] Campbell, S.A., and Knutson, K.L., IEEE Trans.Semicon.Manufact. 5,302(1992).CrossRefGoogle Scholar
[10] Sorrell, F.Y., Fordham, M.J., Öztürk, M.C., and Wortman, J.J., IEEE Trans.Electr.Dev. 39,75(1992).CrossRefGoogle Scholar
[11] Norman, S.A.,IEEE Trans.Electr.Dev. 39,205(1992).CrossRefGoogle Scholar
[12] Fukada, H., Yasuda, M., and Iwabuchi, T., Jpn.J.Appl.Phys. 31,3436 (1992).CrossRefGoogle Scholar