Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-20T01:04:37.265Z Has data issue: false hasContentIssue false

ToF-SIMS Study of Pulsed Laser Melting Energy Density on Ti Implanted Si for Intermediate Band

Published online by Cambridge University Press:  31 January 2011

Javier Olea Ariza
Affiliation:
oleaariza@fis.ucm.es, Facultad de Ciencias Fisicas de la Universidad Complutense de Madrid, Fisica Aplicada III (Electricidad y Electrónica), Madrid, Spain
David Pastor
Affiliation:
dpastor@fis.ucm.es, Facultad de Ciencias Fisicas de la Universidad Complutense de Madrid, Fisica Aplicada III (Electricidad y Electrónica), Madrid, Spain
Ignacio Mártil
Affiliation:
imartil@fis.ucm.es, Facultad de Ciencias Fisicas de la Universidad Complutense de Madrid, Fisica Aplicada III (Electricidad y Electrónica), Madrid, Spain
Germán González-Díaz
Affiliation:
germang@fis.ucm.es, Facultad de Ciencias Fisicas de la Universidad Complutense de Madrid, Fisica Aplicada III (Electricidad y Electrónica), Madrid, Spain
Get access

Abstract

An exhaustive study on the resulting impurity profile in Si samples implanted with Ti with high doses and subsequently Pulsed-Laser Melting (PLM) annealed is presented. Two different effects are shown to be present in the two different stages of the annealing. In the melting stage the box-shaped effect tends to increase the thickness of the implanted layer and to decrease the maximum peak concentration as the energy density of the annealing increases. On the contrary, in the solidifying stage, the snow-plow effect decreases the thickness of the layer and increases the maximum peak concentration as the energy density of the annealing increases. Moreover, as a direct consequence of the snow-plow effect, part of the impurities is expelled from the sample by the surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Brown, G. F. and Wu, J. Laser & Photon. Rev. 3, 394(2009).Google Scholar
2 Luque, A. and Martí, A., Phys. Rev. Lett. 78, 5014(1997).Google Scholar
3 Yu, K. M. Walukiewicz, W. Wu, J. Shan, W. Beeman, J. W. Scarpulla, M. A. Dubon, O. D. and Becla, P. Phys. Rev. Lett. 91, 246403(2003).Google Scholar
4 Yu, K. M. Walukiewicz, W. Wu, J. Shan, W. Scarpulla, M. A. Dubon, O. D. Beeman, J. W. and Becla, P. Phys. Stat. Sol. (b) 241, 660(2004).Google Scholar
5 Yu, K. M. Walukiewicz, W. Ager, J. W. III , Bour, D. Farshchi, R. Dubon, O. D. Li, S. X. Sharp, I. D. and Haller, E. E. Appl. Phys. Lett. 88, 092110(2006).Google Scholar
6 Palacios, P. Fernàndez, J. J., Sànchez, K., Conesa, J. C. and Wahnón, P., Phys. Rev. B 73, 085206(2006).Google Scholar
7 Martí, A., López, N., Antolín, E., Cànovas, E., Stanley, C. Farmer, C. Cuadra, L. and Luque, A. Thin Solid Films 511-512, 638(2006).Google Scholar
8 Palacios, P. Sànchez, K., Conesa, J. C. Fernàndez, J. J., and Wahnón, P., Thin Solid Films 515, 6280(2007).Google Scholar
9 Palacios, P. Aguilera, I. Sànchez, K., Conesa, J. C. and Wahnón, P., Phys. Rev. Lett. 101, 046403(2008).Google Scholar
10 Wang, W. Lin, A. S. and Phillips, J. D. Appl. Phys. Lett. 95, 011103(2009).Google Scholar
11 Martí, A., Tablero, C. Antolín, E., Luque, A. Campion, R. P. Novikov, S. V. and Foxon, C. T. Sol. Energy Mater. Sol. Cells 93, 641(2009).Google Scholar
12 Kim, T. G. Warrender, J. M. and Aziz, M. J. Appl. Phys. Lett. 88, 241902(2006).Google Scholar
13 Olea, J. Toledano-Luque, M., Pastor, D. Gonzàlez-Díaz, G., and Màrtil, I., J. Appl. Phys. 104, 016105(2008).Google Scholar
14 Antolín, E., Martí, A., Olea, J. Pastor, D. Gonzàlez-Díaz, G., Màrtil, I., and Luque, A. Appl. Phys. Lett. 94, 042115(2009).Google Scholar
15 Olea, J. Pastor, D. Toledano-Luque, M., San-Andrés, E., Màrtil, I., and Gonzàlez-Díaz, G., Proc.7th IEEE Spanish Conf. Elec. Dev., (Santiago de Compostela, Spain, 2009), pp. 3841.Google Scholar
16 Gonzàlez-Díaz, G., Olea, J. Màrtil, I., Pastor, D. Martí, A., Antolín, E., and Luque, A. Sol. Energy Mater. Sol. Cells 93, 1668(2009).Google Scholar
17 Olea, J. Gonzàlez-Díaz, G., Pastor, D. and Màrtil, I., J. Phys. D: Appl. Phys. 42, 085110(2009).Google Scholar
18 Mott, N. F. Rev. Mod. Phys. 40, 677(1968).Google Scholar
19 Martí, A., Cuadra, L. López, N., and Luque, A. Semiconductors 38, 946(2004).Google Scholar
20 Luque, A. Martí, A., Antolín, E., and Tablero, C. Phys. B 382, 320(2006).Google Scholar
21 Sànchez, K., Aguilera, I. Palacios, P. and Wahnón, P., Phys. Rev. B 79, 165203(2009).Google Scholar
22 Hocine, S. and Mathiot, D. Appl. Phys. Lett. 53, 1269(1988).Google Scholar
23 Mathiot, D. and Barbier, D. J. Appl. Phys. 69, 3878(1991).Google Scholar
24 Yu, K. M. Walukiewicz, W. Scarpulla, M. A. Dubon, O. D. Wu, J. Jasinski, J. Liliental-Weber, Z., Beeman, J. W. Pillai, M. R. and Aziz, M. J. J. Appl. Phys. 94, 1043(2003).Google Scholar
25 Young, R. T. Wood, R. F. Narayan, J. White, C. W. and Christie, W. H. Trans. Elec. Dev. 27, 807(1980).Google Scholar
26 White, C. W. Wilson, S. R. Appleton, B. R. and Young, F. W. Jr. , J. Appl. Phys. 51, 738(1980).Google Scholar
27 Narayan, J. White, C. W. Aziz, M. J. Stritzker, B. and Walthuis, A. J. Appl. Phys. 57, 564(1985).Google Scholar
28 Appleton, B. R. White, C. W. Larson, B. C. Wilson, S. R. and Narayan, J. Trans. Nucl. Sci. 26, 1686(1979).Google Scholar
29 Tsouroutas, P. Tsoukalas, D. Zergioti, I. Cherkashin, N. and Claverie, A. J. Appl. Phys. 105, 094910(2009).Google Scholar
30 Kuo, C.-C. J. Mater. Proc. Tech. 209, 2978(2009).Google Scholar
31 Galvin, G. J. Thompson, M. O. Mayer, J. W. Hammond, R. B. Paulter, N. and Peercy, P. S. Phys. Rev. Lett. 48, 33(1982).Google Scholar