Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T18:57:47.561Z Has data issue: false hasContentIssue false

Trapping and Detrapping of H in Si: Impact on Diffusion Properties and Solar Cell Processing

Published online by Cambridge University Press:  01 February 2011

Bhushan Sopori
Affiliation:
National Renewable Energy Laboratory, Golden, CO
Y. Zhang
Affiliation:
National Renewable Energy Laboratory, Golden, CO
R. Reedy
Affiliation:
National Renewable Energy Laboratory, Golden, CO
K. Jones
Affiliation:
National Renewable Energy Laboratory, Golden, CO
N. M. Ravindra
Affiliation:
New Jersey Institute of Technology, Newark, NJ
S. Rangan
Affiliation:
Pennsylvania State University, University Park, PA
S. Ashok
Affiliation:
Pennsylvania State University, University Park, PA
Get access

Abstract

Influence of trapping and detrapping on the diffusion behavior of H in Si is investigated using both experiment and theory. Experimental H (or D) diffusion profiles, produced by plasma and ion implantation processes, are fitted with a theoretical model. This model includes three kinds of traps – stationary, process-induced, and mobile. Excellent correlation between theory and experiment is observed. Best–fit parameters provide an insight into the trapping mechanisms. We also show how some of the problems resulting from trapping can be circumvented by suitable process conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sana, P., Rohatgi, A., Kalejs, J. and Bell, R. O., Appl. Phys. Lett. 64, 111 (1994)Google Scholar
2. Borenstein, J. T., Corbett, J. W. and Pearton, S. J., J. Appl. Phys. 73, 2751 (1993)Google Scholar
3. Capizzi, M. and Mittiga, A., Physica 146B, 19 (1987).Google Scholar
4. Mathiot, D., Phys. Rev. B 40, 5867 (1989)Google Scholar
5. Kalejs, J. P. and Rajendran, S., App. Phys. Lett. 55, 25 (1989)Google Scholar
6. Borenstein, J. T., Tulchinski, D. and corbett, J. W., Mat. Res. Soc. Symp. Proc. 163, 633 (1990)Google Scholar
7. Rizk, R., Mierry, P. de, Ballutaud, D., Aucouturier, M., and Mathiot, D., Phys. Rev. B 44, 6141 (1991)Google Scholar
8. Wieringen, A. Van and Warmholtz, N., Physica 22, 849 (1956)Google Scholar
9. Hansen, W. L., Pearton, S. J., and, Haller, E. E., Appl. Phys. Lett. 44, 606 (1984)Google Scholar
10. Mogro-Campero, A., Love, R. P., and Schubert, R., J. Electrochem. Soc. 132, 2006 (1985)Google Scholar
11. Johnson, N.M. and Herring, C., and Chadi, D.J., Phys. Rev. Lett. 56, 769 (1986)Google Scholar
12. Johnson, N.M and Herring, C., Inst. Phys. Conf. Ser. 95, 415 (1989)Google Scholar
13. Ichimiya, T., and Furuichi, A., Int. J. Appl. Rad. Isotopes 19, 573 (1968)Google Scholar
14. Johnson, N. M. and Moyer, M.D., Appl. Phys. Lett. 46, 787 (1985)Google Scholar
15. Capizzi, M. and Mittiga, A., Appl. Phys. Lett. 50, 918 (1987)Google Scholar
16. Seager, C.H. and Anderson, R.A., Appl. Phys. Lett. 53, 1181 (1988)Google Scholar
17. Sopori, B. L., Jones, Kim and Deng, Xiao Jun, Appl. Phys. Lett. 61, 2560 (1992)Google Scholar
18. Zhang, Y., Ph. D. Thesis, “Modeling Hydrogen Diffusion for Solar Cell Passivation and Process Optimization,” New Jersey Institute of Technology, 2002 Google Scholar
19. Sopori, B. L., Zhang, Y., and Reedy, R., Procd. 29th IEEE-PVSC, New Orleans, May, 2002, to be publishedGoogle Scholar