Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T19:31:54.134Z Has data issue: false hasContentIssue false

Two Photon Spectroscopy of Dithienyl Polyenes

Published online by Cambridge University Press:  10 February 2011

Thomas M. Cooper
Affiliation:
Air Force Research Laboratory, AFRL/MLPJ, 3005 P St. Ste. 1, Wright-Patterson Air Force Base, OH 45433
Paul A. Fleitz
Affiliation:
Air Force Research Laboratory, AFRL/MLPJ, 3005 P St. Ste. 1, Wright-Patterson Air Force Base, OH 45433
Laura A. Sowards
Affiliation:
Air Force Research Laboratory, AFRL/MLPJ, 3005 P St. Ste. 1, Wright-Patterson Air Force Base, OH 45433
Lalgudi V. Natarajan
Affiliation:
Science Applications International Corporation, Dayton, OH 45434
Sean Kirkpatricky
Affiliation:
Science Applications International Corporation, Dayton, OH 45434
Suresh Chandra
Affiliation:
Science Applications International Corporation, Dayton, OH 45434
Charles W. Spangler
Affiliation:
Department of Chemistry, Montana State University, Bozeman, MT 59717
Get access

Abstract

To understand the properties of light-sensitive compounds used in optical limiters having photoinduced charge transfer mechanisms, we have investigated the photophysics of a series of di(2-thienyl-3,3'-butyl)polyenes. Spectroscopic measurements, including UV/Vis, fluorescence, fluorescence lifetimes, fluorescence quantum yields, triplet state lifetime, solvent effects and two-photon absorption coefficient were obtained as a function of the number of double bonds(n = 1-5). Trends in the data reflected the ordering, energy gap between and mixing of 1Bu* and 1Ag* excited state configurations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Su, W., Cooper, T.M. and Brant, M. C., Chem. Matl. 10, 1212(1998).Google Scholar
2 Perry, J.W., Mansour, K., Lee, I.-Y. S., Wu, X.-L., Bedworth, P.V., Chen, C.-T., Ng, D., Marder, S.R., Miles, P., Wada, T., Tian, M. and Sasabe, H., Science 273, 1533(1996).Google Scholar
3 Spangler, C.W. and He, M.. Mat. Res. Soc. Symp. 479, 59(1997).Google Scholar
4 Demas, J.N. and Crosby, G.A., J. Phys. Chem. 75, 991(1972).Google Scholar
5 Orlandi, G., Zerbetto, F. and Zgierski, M.Z., Chem. Rev. 91, 867(1991).Google Scholar
6 Allen, M.T. and Whitten, D.G., Chem. Rev., 89, 1691(1989).Google Scholar
7 Bartocci, G., Spalletti, A., Becker, R.S., Elisei, F., Floridi, S. and Mazzucato, U., J. Am.Chem. Soc., 121, 1065(1999).Google Scholar
8 Natarajan, L.V., Sowards, L.A., Spangler, C.W., Tang, N., Fleitz, P.A., Sutherland, R.L. and Cooper, T.M., Mat. Res. Soc. Symp., 479, 135(1997).Google Scholar
9 Natarajan, L.V., Kirkpatrick, S.M., Sutherland, R.L., Sowards, L.A., Spangler, C.W., Fleitz, P.A. and Cooper, T.M., SPIE Proc., 3472, 151(1998).Google Scholar
10 Turro, N.J., Modern Molecular Photochemistry, (University Science Books, Sausalito, 1991), p. 183.Google Scholar