Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T10:50:42.856Z Has data issue: false hasContentIssue false

Vacancy-type and electrical defects in amorphous silicon probed by positrons and electrons

Published online by Cambridge University Press:  28 February 2011

S. Roorda
Affiliation:
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, NL-1098 SJ Amsterdam, The Netherlands
R. A. Hakvoort
Affiliation:
Interfaculty Reactor Institute, Delft Univ. of Technology, Mekelweg 15, NL-2629 JB Delft, The Netherlands
A. van Veen
Affiliation:
Interfaculty Reactor Institute, Delft Univ. of Technology, Mekelweg 15, NL-2629 JB Delft, The Netherlands
P. A. Stolk
Affiliation:
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, NL-1098 SJ Amsterdam, The Netherlands
F. W. Saris
Affiliation:
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, NL-1098 SJ Amsterdam, The Netherlands
Get access

Abstract

Amorphous Si has been investigated by variable-energy positron annihilation spectroscopy (PAS) and lifetime measurements of optically generated free carriers. The density of positron-trapping defects can be reduced by thermal annealing at 500°C. Simultaneously, the density of bandgap states is reduced as indicated by an increased photocarrier lifetime. Hydrogen, implanted and annealed at 150°C, leads to an increased photocarrier lifetime and reduced positron trapping. It appears that (some of) the electrical defects are associated with positron-trapping, and therefore possibly vacancy-type, structural defects. Finally, both methods have been used to detect small amounts of ion irradiation damage in amorphous Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Turnbull, D., in: ‘Beam-solid interactions and phase transformations’, edited by Kurz, H., Olson, G. L., and Poate, J. M. (Mater. Res. Soc. Symp. Proc. 51, MRS Pittsburgh 1986) p. 71.Google Scholar
2 Roorda, S., Sinke, W. C., Poate, J. M., Jacobson, D. C., Dierker, S., Dennis, B. S., Eaglesham, D. J., Spaepen, F., and Fuoss, P., Phys. Rev. B44, 3702 (1991).Google Scholar
3 Coffa, S. and Poate, J. M., Appl. Phys. Lett. 59, 2296 (1991).CrossRefGoogle Scholar
4 Schultz, P. J. and Lynn, K. G., Rev. Mod. Phys. 60, 701 (1988).Google Scholar
5 Roorda, S., Hakvoort, R.A., van Veen, A., Stolk, P.A., and Saris, F.W., unpublished.Google Scholar
6 van Veen, A., J.Trace and Microprobe Techn. 8, 1 (1990).Google Scholar
7 van Veen, A., Schut, H., de Vries, J., Hakvoort, R. A., and IJpma, M. R., in: ‘Slow positron beams for solids and surfaces’, Eds.: Schultz, P. J., Massoumi, G. R., and Simpson, P. J. (AIP Conf. Proc. 218) p.171(1990).Google Scholar
8 Fork, R. L., Greene, B. I., and Shank, C. V., Appl. Phys. Lett. 38, 671 (1981).CrossRefGoogle Scholar
9 Stolk, P. A. et al., Mater. Res. Soc. Symp. Proc. Vol.205 (in press).Google Scholar
10 Nielsen, B., Lynn, K. G., Vehanen, A., and Schultz, P., Phys. Rev. B32, 2296 (1985).Google Scholar
11 Schultz, P. J. et al., Phys. Rev. Lett. 61, 187 (1988).CrossRefGoogle Scholar
12 Olson, G. L. and Roth, J. A., Mater. Sci. Rep. 3, 1 (1988).Google Scholar
13 Stolk, P. A., unpublished.Google Scholar
14 Heidemann, K. F., Grüner, M., and te Kaat, E., Rad. Eff. 82, 103 (1984).CrossRefGoogle Scholar