Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T14:02:56.326Z Has data issue: false hasContentIssue false

Vibrational Lifetimes of Hydrogen in Silicon: Isotope Effects and MOSFET Reliability

Published online by Cambridge University Press:  17 March 2011

Gunter Lüpke
Affiliation:
Department of Applied Science, The College of William and Mary, Williamsburg, Virginia 23187
Baozhou Sun
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235
Norman H. Tolk
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235
Leonard C. Feldman
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235
Get access

Abstract

Characterization of defect and impurity reactions, dissociation and migration in semiconductors requires detailed understanding of rates and pathways of vibrational energy flow, of energy transfer channels and of coupling mechanisms between local modes and the phonon bath of the host material. Significant progress in reaching this goal has been accomplished in recent landmark studies exploring the excitation and dynamics of vibrational states associated with hydrogen in silicon. We describe recent experiments which measure the vibrational lifetime of the Si-H bond in various defect configurations and show the relationship between these lifetimes and silicon MOSFET reliability.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lüpke, G., Tolk, N. H. and Feldman, L. C., J. Appl. Phys. 93, 2316 (2003).Google Scholar
2. Pankove, J. I. and Johnson, N. M., 1991, Hydrogen in Semiconductors (Semiconductors and Semimetals 34) (New York: Academic).Google Scholar
3. Higashi, G. S., Chabal, Y. J., Trucks, G. W., and Raghavachari, K., Appl. Phys. Lett. 56, 656 (1990).Google Scholar
4. Hydrogen in Semiconductors II: Semiconductors and Semimetals, edited by Nickel, N. H. (Academic Press, New York, 1999), Vol. 61, and References therein.Google Scholar
5. Stesmans, A., Phys. Rev. B 61, 8393 (2000); J. Appl. Phys. 88, 489 (2000).Google Scholar
6. Identification of Defects in Semiconductors: Semiconductors and Semimetals, edited by Stavola, M. (Academic Press, New York, 1999), Vol. 51B, Chap. 3, and References therein.Google Scholar
7. Pearton, S. J., Corbett, J. W., and Stavola, M., Hydrogen in Crystalline Semiconductors (Springer Verlag, Berlin, 1992), and References therein.Google Scholar
8. Barker, A. S. Jr., and Sievers, A. J., Rev. Mod. Phys. 47, Suppl. No. 2, S1 (1975).Google Scholar
9. “Vibrational Spectroscopy of Light Element Impurities in Semiconductors,” Stavola, M., in Identification of Defects in Semiconductors, vol. 51b, edited by Stavola, M. (Academic Press, New York, 1998), chapter 3, p. 157; and References therein.Google Scholar
10. Laubereau, A. and Kaiser, W., Rev. Mod. Phys. 50, 607 (1978).Google Scholar
11. Dlott, D. D., in Laser Spectroscopy of Solids II, ed. by Yen, W. M., Topics in Applied Physics, vol. 65 (Springer-Verlag, Berlin, 1989), p. 167.Google Scholar
12. Nitzan, A. and Jortner, J., Mol. Phys. 25, 713 (1973); A. Nitzan, S. Mukamel, and J. Jortner, J. Chem. Phys. 60, 3929 (1974).Google Scholar
13. Egorov, S. A. and Skinner, J. L., J. Chem. Phys. 103, 1533 (1995).Google Scholar
14. Neil, G. R., Bohn, C. L., Benson, S. V., Biallas, G., Douglas, D., Dylla, H. F., Evans, R., Fugitt, J., Grippo, A., Gubeli, J., Hill, R., Jordan, K., Li, R., Merminga, L., Piot, P., Preble, J., Shinn, M., Siggins, T., Walker, R., and Yunn, B., Phys. Rev. Lett. 84, 662 (2000).Google Scholar
15. Budde, M., Lüpke, G., Cheney, C. Parks, Tolk, N. H., Feldman, L. C., Phys. Rev. Lett. 85, 1452 (2000).Google Scholar
16. Budde, M., Lüpke, G., Chen, E., Zhang, X., Tolk, N. H., Feldman, L. C., Tarhan, E., Ramdas, A. K., Stavola, M., Phys. Rev. Lett. 87, 145501 (2001).Google Scholar
17. Lüpke, G., Zhang, X., Sun, B., Fraser, A., Tolk, N. H., Feldman, L. C., Phys. Rev. Lett. 88, 135501 (2002).Google Scholar
18. Cheney, C. Parks, Budde, M., Lüpke, G., Tolk, N. H., Feldman, L. C., Phys. Rev. B 65, 35214 (2002).Google Scholar
19. Walle, C. G. Van De, and Jackson, W. B., Appl. Phys. Lett. 69, 2441 (1996).Google Scholar
20. Guyot-Sionnest, P., Dumas, P., Chabal, Y. J., and Higashi, G. S., Phys. Rev. Lett. 64, 2156 (1990)Google Scholar
21. Lyding, J. W., Hess, K., and Kizilyalli, I. C., Appl. Phys. Lett. 68, 2526 (1996).Google Scholar
22. Shen, T. C., Wang, C., Abeln, G. C., Tucker, J. R., Lyding, J. W., Avouris, P., Walkup, R. E., Science 268, 1590 (1995).Google Scholar
23. Foley, E. T., Kam, A. F., Lyding, J. W., Avouris, P., Phys. Rev. Lett. 80, 1336 (1998)Google Scholar
24. Persson, B. N. J., Avouris, P., Surface Science 390, 45 (1997).Google Scholar
25. Schulz, G. J., Rev. Mod. Phys. 45, 423 (1973).Google Scholar
26. Chen, Z., Ong, P., Mylin, A. K., Singh, V., and Chetlur, S., App. Phys. Lett. 81, 3278 (2002).Google Scholar