Skip to main content Accessibility help
×
Home

A BETTER COMPARISON OF $\operatorname{cdh}$ - AND $l\operatorname{dh}$ -COHOMOLOGIES

  • SHANE KELLY (a1)

Abstract

In order to work with non-Nagata rings which are Nagata “up-to-completely-decomposed-universal-homeomorphism,” specifically finite rank Hensel valuation rings, we introduce the notions of pseudo-integral closure, pseudo-normalization, and pseudo-Hensel valuation ring. We use this notion to give a shorter and more direct proof that $H_{\operatorname{cdh}}^{n}(X,F_{\operatorname{cdh}})=H_{l\operatorname{dh}}^{n}(X,F_{l\operatorname{dh}})$ for homotopy sheaves $F$ of modules over the $\mathbb{Z}_{(l)}$ -linear motivic Eilenberg–Maclane spectrum. This comparison is an alternative to the first half of the author’s volume Astérisque 391 whose main theorem is a cdh-descent result for Voevodsky motives. The motivating new insight is really accepting that Voevodsky’s motivic cohomology (with $\mathbb{Z}[\frac{1}{p}]$ -coefficients) is invariant not just for nilpotent thickenings, but for all universal homeomorphisms.

Copyright

References

Hide All
[BM18] Bhatt, B. and Mathew, A., The arc-topology, 2018.
[Bou64] Bourbaki, N., Éléments de mathématique. Fasc. XXX. Algèbre commutative. Chapitre 5: Entiers. Chapitre 6: Valuations, Actualités Scientifiques et Industrielles, No. 1308, Hermann, Paris, 1964.
[CD15] Cisinski, D.-C. and Déglise, F., “ Integral mixed motives in equal characteristic ”, in Documenta Math. Extra Volume: Alexander S. Merkurjev’s Sixtieth Birthday, 2015, 145194.
[CTHK] Colliot-Thélene, J.-L., Hoobler, R. T. and Kahn, B., The Bloch–Ogus–Gabber theorem , Algebraic K-theory (Toronto, ON, 1996) 16 (1997), 3194.
[EGAII] Grothendieck, A., Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes , Inst. Hautes Études Sci. Publ. Math. 8 (1961), 222.
[EGAIV2] Grothendieck, A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II , Inst. Hautes Études Sci. Publ. Math. 24 (1965), 231.
[EGAIV3] Grothendieck, A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas, troisième partie , Inst. Hautes Études Sci. Publ. Math. 28 (1966), 255. Revised in collaboration with Jean Dieudonné. Freely available on the Numdam web site at http://www.numdam.org/numdam-bin/feuilleter?id=PMIHES_1966__28_.
[EGAIV4] Grothendieck, A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV , Inst. Hautes Études Sci. Publ. Math. 32 (1967), 361. Revised in collaboration with Jean Dieudonné. Freely available on the Numdam web site at http://www.numdam.org/numdam-bin/feuilleter?id=PMIHES_1967__32_.
[EK18] Elmanto, E. and Khan, A. A., Perfection in motivic homotopy theory, 2018.
[EP05] Engler, A. J. and Prestel, A., Valued Fields, Springer Science & Business Media, Berlin/Heidelberg, 2005.
[GK15] Gabber, O. and Kelly, S., Points in algebraic geometry , J. Pure Applied Algebra 219(10) (2015), 46674680.
[HK18] Huber, A. and Kelly, S., Differential forms in positive characteristic II: cdh-descent via functorial Riemann–Zariski spaces , Algebra and Number Theory Forthcoming, 2018. Preprint arXiv:1706.05244.
[KS06] Kashiwara, M. and Schapira, P., Categories and Sheaves, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 332 , Springer-Verlag, Berlin, 2006.
[Kel12] Kelly, S., Triangulated categories of motives in positive characteristic. PhD thesis, Université Paris 13, Australian National University, 2012. Preprint arXiv:1305.5349.
[Kel14] Kelly, S., Vanishing of negative K-theory in positive characteristic , Compos. Math. 150(8) (2014), 14251434.
[Kel17] Kelly, S., Voevodsky motives and ldh-descent , Astérisque 391 (2017), iv+125.
[KM18] Kelly, S. and Morrow, M., $K$ -theory of valuation rings, 2018.
[Mat89] Matsumura, H., Commutative Ring Theory, 2nd edn, Cambridge Studies in Advanced Mathematics 8 , Cambridge University Press, Cambridge, 1989, Translated from the Japanese by M. Reid.
[Qui73] Quillen, D., Higher Algebraic K-Theory: I, 85147. Springer, Berlin, Heidelberg, 1973.
[RG71] Raynaud, M. and Gruson, L., Critères de platitude et de projectivité. Techniques de “platification” d’un module , Invent. Math. 13 (1971), 189.
[Ryd10] Rydh, D., Submersions and effective descent of étale morphisms , Bull. Soc. Math. France 138 (2010), 181230.
[SGA4] Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos. Lecture Notes in Mathematics, Vol. 269. Springer-Verlag, Berlin, 1972. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck, et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat.
[SGA42] Théorie des topos et cohomologie étale des schémas. Tome 2. Lecture Notes in Mathematics, Vol. 270. Springer-Verlag, Berlin, 1972. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat.
[Stacks]The Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu, 2014.
[Tem11] Temkin, M., Relative Riemann–Zariski spaces , Israel J. Mathematics 185(1) (2011), 142.
[Voe96] Voevodsky, V., Homology of schemes , Selecta Math. (N.S.) 2(1) (1996), 111153.
[Voe00] Voevodsky, V., “ Triangulated categories of motives over a field ”, in Cycles, Transfers, and Motivic Homology Theories, Ann. of Math. Stud. 143 , Princeton University Press, Princeton, NJ, 2000, 188238.
[Voe00b] Voevodsky, V., “ Cohomological theory of presheaves with transfers ”, in Cycles, Transfers, and Motivic Homology Theories, Ann. of Math. Stud. 143 , Princeton Univ. Press, Princeton, NJ, 2000, 87137.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed