Skip to main content
×
×
Home

THE HOLOMORPHY CONJECTURE FOR NONDEGENERATE SURFACE SINGULARITIES

  • WOUTER CASTRYCK (a1) (a2), DENIS IBADULA (a3) and ANN LEMAHIEU (a4)
Abstract

The holomorphy conjecture roughly states that Igusa’s zeta function associated to a hypersurface and a character is holomorphic on $\mathbb{C}$ whenever the order of the character does not divide the order of any eigenvalue of the local monodromy of the hypersurface. In this article, we prove the holomorphy conjecture for surface singularities that are nondegenerate over $\mathbb{C}$ with respect to their Newton polyhedron. In order to provide relevant eigenvalues of monodromy, we first show a relation between the normalized volumes (which appear in the formula of Varchenko for the zeta function of monodromy) of the faces in a simplex in arbitrary dimension. We then study some specific character sums that show up when dealing with false poles. In contrast to the context of the trivial character, we here need to show fakeness of certain candidate poles other than those contributed by $B_{1}$ -facets.

Copyright
References
Hide All
[AVG] Arnold, V., Varchenko, A. and Goussein-Zadé, S., Singularités des applications différentiables II, Editions Mir, Moscou, 1986.
[BRS] Berlekamp, E., Rumsey, H. and Solomon, G., On the solution of algebraic equations over finite fields , Inform. Control 10 (1967), 553564.
[BV] Bories, B. and Veys, W., Igusa’s p-adic local zeta function and the monodromy conjecture for non-degenerated surface singularities , Mem. Amer. Math. Soc. 242(1145) (2016).
[D1] Denef, J., Local zeta functions and Euler characteristics , Duke Math. J. 63 (1991), 713721.
[D2] Denef, J., “ Report on Igusa’s local zeta function ”, in Séminaire Bourbaki 43, Vol. 1990–1991, exp. 741, Astérisque 201-202-203 , 1991, 359386.
[D3] Denef, J., Degree of local zeta functions and monodromy , Comput. Math. 89 (1993), 207216.
[DL] Denef, J. and Loeser, F., Caractéristique d’Euler–Poincaré, fonctions zêta locales et modifications analytiques , J. Amer. Math. Soc. 5(4) (1992), 705720.
[DV] Denef, J. and Veys, W., On the holomorphy conjecture for Igusa’s local zeta function , Proc. Amer. Math. Soc. 123 (1995), 29812988.
[FJ] Fried, M. and Jarden, M., Field Arithmetic, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge 11 , Springer, Berlin, Heidelberg, 2008.
[H] Hoornaert, K., Newton polyhedra and the poles of Igusa’s local zeta function , Bull. Belg. Math. Soc. Simon Stevin 9(4) (2002), 589606.
[I] Igusa, J., Complex powers and asymptotic expansions I , J. Reine Angew. Math. 268/269 (1974), 110130; II, J. Reine Angew. Math. 278/279 (1975), 307–321.
[LVP1] Lemahieu, A. and Van Proeyen, L., The holomorphy conjecture for ideals in dimension two , Proc. Amer. Math. Soc. 139 (2011), 38453852.
[LVP2] Lemahieu, A. and Van Proeyen, L., Monodromy conjecture for nondegenerate surface singularities , Trans. Amer. Math. Soc. 363(9) (2011), 48014829.
[LV] Lemahieu, A. and Veys, W., Zeta functions and monodromy for surfaces that are general for a toric idealistic cluster , Int. Math. Res. Not. IMRN 1 (2009), 1162.
[RV] Rodrigues, B. and Veys, W., Holomorphy of Igusa’s and topological zeta functions for homogeneous polynomials , Pacific J. Math. 201 (2001), 429440.
[ST] Smith, K. and Thompson, H., “ Irrelevant exceptional divisors for curves on a smooth surface ”, in Algebra, Geometry and their Interactions, Contemp. Math. 448 , Amer. Math. Soc., Providence, RI, 2007, 245254.
[Va] Varchenko, A., Zeta-function of monodromy and Newton’s diagram , Invent. Math. 37 (1976), 253262.
[Ve] Veys, W., Holomorphy of local zeta functions for curves , Math. Ann. 295 (1993), 635641.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Nagoya Mathematical Journal
  • ISSN: 0027-7630
  • EISSN: 2152-6842
  • URL: /core/journals/nagoya-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

MSC classification

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 26 *
Loading metrics...

Abstract views

Total abstract views: 151 *
Loading metrics...

* Views captured on Cambridge Core between 28th October 2016 - 21st July 2018. This data will be updated every 24 hours.