Skip to main content
×
Home
    • Aa
    • Aa

Facies analysis and depositional model of the Serravallian-age Neurath Sand, Lower Rhine Basin (W Germany)

  • L. Prinz (a1), A. Schäfer (a1), T. McCann (a1), T. Utescher (a1) (a2), P. Lokay (a3) and S. Asmus (a3)...
Abstract
Abstract

The up to 60 m thick Neurath Sand (Serravallian, late middle Miocene) is one of several marine sands in the Lower Rhine Basin which were deposited as a result of North Sea transgressive activity in Cenozoic times. The shallow-marine Neurath Sand is well exposed in the Garzweiler open-cast mine, which is located in the centre of the Lower Rhine Basin. Detailed examination of three sediment profiles extending from the underlying Frimmersdorf Seam via the Neurath Sand and through to the overlying Garzweiler Seam, integrating both sedimentological and palaeontological data, has enabled the depositional setting of the area to be reconstructed.

Six subenvironments are recognised in the Neurath Sand, commencing with the upper shoreface (1) sediments characterised by glauconite-rich sands and an extensive biota (Ophiomorpha ichnosp.). These are associated with the silt-rich sands of a transitional subenvironment (2), containing Skolithos linearis, Planolites ichnosp. and Teichichnus ichnosp. These silt-rich sands grade up to the upper shoreface subenvironment (1), which is indicative of an initial regressive trend. The overlying intertidal deposits can be subdivided into a lower breaker zone (3), characterised by ridge-and-runnel systems, and the swash zone (4) where the surge and backwash of waves resulted in the deposition of high-energy laminites. The intertidal deposits were capped by aeolian backshore sediments (5). Extensive root traces present in this latter subenvironment reflect the development of the overlying peatland (i.e. Garzweiler Seam). Within the Garzweiler Seam, restricted sand lenses indicate a lagoonal or estuarine depositional environment (6). Regional correlation with adjacent wells establishes that shallow-marine conditions were widespread across the Lower Rhine Basin in middle Serravallian times. The shoreline profile, characterised by both tidal and wave activity and influenced by fluvial input from the adjacent Rhenish Massif, is indicative of the complexity of the coastal depositional setting within the Lower Rhine Basin.

Copyright
Corresponding author
*Corresponding author. Email: lprinz@uni-bonn.de
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

T. Aagaard & M.G. Hughes , 2006. Sediment suspension and turbulence in the swash zone of dissipative beaches. Marine Geology 228: 117135.

T. Aagaard , B. Greenwood & J. Nielsen , 1997. Mean currents and sediment transport in a rip channel. Marine Geology 140: 2545.

A.W. Archer , 1996. Reliability of lunar orbital periods extracted from ancient cyclic tidal rhythmites. Earth and Planetary Science Letters 141: 110.

J. Bartholdy , 2012. Salt marsh sedimentation. In: R.A. Davis Jr & R.W. Dalrymple (eds): Principles of tidal sedimentology. Springer (Berlin): 151185.

W. Boenik , 2002. The Pleistocene drainage pattern in the Lower Rhine Basin. Netherlands Journal of Geosciences / Geologie en Mijnbouw 81 (2): 201210.

H.C. Bostock , B.P. Brooke , D.A. Ryan , G. Hancock , T. Pietsch , R. Packett & K. Harle , 2007. Holocene and modern sediment storage in the subtropical macrotidal Fitzroy River estuary, Southeast Queensland, Australia. Sedimentary Geology 201: 321340.

F. Bungenstock & A. Schäfer , 2009. The Holocene relative sea-level curve for the tidal basin of the barrier island Langeoog, German Bight, Southern North Sea. Global and Planetary Change 66: 3451.

B. Castelle & G. Coco , 2012. The morphodynamics of rip channels on embayed beaches. Continental Shelf Research 43: 1023.

K. Choi , 2010. Rhythmic climbing-ripple cross-lamination in inclined heterolithic stratification (IHS) of a macrotidal estuarine channel, Gomso Bay, West Coast of Korea. Journal of Sedimentary Research 80 (6): 550561.

C.J. Dabrio , 1982. Sedimentary structures generated on the foreshore by migrating ridge and runnel systems on microtidal and mesotidal coasts of S. Spain. Sedimentary Geology 32: 141151.

R.W. Dalrymple & K. Choi , 2007. Morphologic and facies trends through the fluvial–marine transition in tide-dominated depositional systems: a schematic framework for environmental and sequence-stratigraphic interpretation. Earth-Science Reviews 81: 135174.

R.W. Dalrymple , B.A. Zaitlin & R. Boyd , 1992. Estuarine facies models: conceptual basis and stratigraphic implications: perspective. Journal of Sedimentary Petrology 62 (6): 11301146.

R.W. Dalrymple , D.A. Mackay , A.A. Ichaso & K.S. Choi , 2012. Processes, morphodynamics, and facies of tide-dominated estuaries. In: R.A. Davis Jr & R.W. Dalrymple (eds): Principles of tidal sedimentology. Springer (Berlin): 79107.

P.R. Desjardins , M.G. Mángano , L.A. Buatois & B.R. Pratt , 2010. Skolithos pipe rock and associated ichnofabrics from the southern Rocky Mountains, Canada: colonization trends and environmental controls in an early Cambrian sand-sheet complex. Lethaia 43: 507528.

N. Eyles & B.M. Clark , 1986. Significance of hummocky and swaley cross-stratification in late Pleistocene lacustrine sediments of the Ontario basin, Canada. Geology 14: 679682.

D. Fan , 2012. Open-coast tidal flats. In: R.A. Davis Jr & R.W. Dalrymple (eds): Principles of tidal sedimentology. Springer (Berlin): 187229.

I. Figueiral , V. Mosbrugger , N.P. Rowe , A.R. Ashraf , T. Utescher & T.P. Jones , 1999. The Miocene peat-forming vegetation of northwestern Germany: an analysis of wood remains and comparison with previous palynological interpretations. Review of Palaeobotany and Palynology 104: 239266.

R.W. Frey , 1990. Trace fossils and hummocky cross-stratification, Upper Cretaceous of Utah. Palaois 5 (3): 203218.

R.W. Frey , J.D. Howard & W.A. Pryor , 1978. Ophiomorpha: its morphologic, taxonomic, and environmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology 23: 199229.

D.J. Graham & N.G. Midgley , 2000. Technical Communication. Graphical representation of particle shape using triangular diagrams: an Excel spreadsheet method. Earth Surface Processes and Landforms 25: 14731477.

C. Grützner , P. Fischer & K. Reicherter , 2016. Holocene surface ruptures of the Rurrand Fault, Germany – insights from palaeoseismology, remote sensing and shallow geophysics. Geophysical Journal International 204: 16621677.

H. Hager , 1993. The origin of the Tertiary lignite deposits in the Lower Rhine region, Germany. International Journal of Coal Geology 23: 251262.

M.C. Haller , 2002. Experimental study of nearshore dynamics on a barred beach with rip channels. Journal of Geophysical Research 107: 14-1–14-21.

B.U. Haq , J. Hardenbol & P.R. Vail , 1987. Chronology of fluctuating sea levels since the Triassic. Science 235: 11561167.

K.-G. Hinzen , 2003. Stress field in the Northern Rhine area, Central Europe, from earthquake fault plane solutions. Tectonophysics 377: 325356.

K. Hori , Y. Saito , Q. Zhao , X. Cheng , P. Wang , Y. Sato & C. Li , 2001. Sedimentary facies of the tide-dominated paleo-Changjiang (Yangtze) estuary during the last transgression. Marine Geology 177: 331351.

R.F. Houtgast & R.T. van Balen , 2000. Neotectonics of the Roer Valley Rift System, the Netherlands. Global and Planetary Change 27: 131146.

J. Hovikoski , M. Räsänen , M. Gingras , M. Roddaz , S. Brusset , W. Hermoza , L.R. Pittman & K. Lertola , 2005. Miocene semidiurnal tidal rhythmites in Madre de Dios, Peru. Geology 33 (3): 177180.

J.D. Howard & R.W. Frey , 1984. Characteristic trace fossils in nearshore to offshore sequences, Upper Cretaceous of east-central Utah. Canadian Journal of Earth Sciences 21 (2): 200219.

Z.J. Hughes , 2012. Tidal channels on tidal flats and marshes. In: R.A. Davis Jr & R.W. Dalrymple (eds): Principles of tidal sedimentology. Springer (Berlin): 269300.

S. Hunt , K.R. Bryan & J.C. Mullarney , 2015. The influence of wind and waves on the existence of stable intertidal morphology in meso-tidal estuaries. Geomorphology 228: 158174.

H.A. Kemna , 2008. Pliocene and Lower Pleistocene fluvial history of the Lower Rhine Embayment, Germany: examples of the tectonic forcing of river courses. Quaternary International 189: 106114.

M. Klett , F. Eichhorst & A. Schäfer , 2002. Facies interpretation from well logs applied to the Tertiary Lower Rhine Basin fill. In: Schäfer, A. & Siehl, A. (eds): Rift tectonics and syngenetic sedimentation – the Cenozoic Lower Rhine Graben and related structures. Netherlands Journal of Geosciences 81 (2): 167176.

A. Kroon & G. Masselink , 2002. Morphodynamics of intertidal bar morphology on a macrotidal beach under low-energy wave conditions, North Lincolnshire, England. Marine Geology 190: 591608.

E.P. Kvale , 2012. Tidal constituents of modern and ancient tidal rhythmites: criteria for recognition and analyses. In: R.A. Davis Jr & R.W. Dalrymple (eds): Principles of tidal sedimentology. Springer (Berlin): 117.

S. Lanzoni , 2002. Long-term evolution and morphodynamic equilibrium of tidal channels. Journal of Geophysical Research 107: 1-1–1-13.

P. Le Hir , W. Roberts , O. Cazaillet , M. Christie , P. Bassoullet & C. Bacher , 2000. Characterization of intertidal flat hydrodynamics. Continental Shelf Research 20: 14331459.

S.G. Longhitano , D. Mellere , R.J. Steel & R.B. Ainsworth , 2012. Tidal depositional systems in the rock record: a review and new insights. Sedimentary Geology 279: 222.

A. Lücke , G. Helle , G.H. Schleser , I. Figueiral , V. Mosbrugger , T.P. Jones & N.P. Rowe , 1999. Environmental history of the German Lower Rhine Embayment during the Middle Miocene as reflected by carbon isotopes in brown coal. Palaeogeography, Palaeoclimatology, Palaeoecology 154: 339352.

J.A. MacEachern , K.L. Bann , M.K. Gingras , J.-P. Zonneveld , S.E. Dashtgard & S.G. Pemberton , 2012. The ichnofacies paradigm. In: D. Knaust & R.G. Bromley (eds): Trace fossils as indicators of sedimentary environments 64. Elsevier (Amsterdam): 103138.

G. Masselink & E.J. Anthony , 2001. Location and height of intertidal bars on macrotidal ridge and runnel beaches. Earth Surface Processes and Landforms 26: 759774.

G. Masselink & B. Hegge , 1995. Morphodynamics of meso- and macrotidal beaches: examples from central Queensland, Australia. Marine Geology 129: 123.

G. Masselink & J.A. Puleo , 2006. Swash-zone morphodynamics. Continental Shelf Research 26: 661680.

R. Mazumder & M. Arima , 2005. Tidal rhythmites and their implications. Earth-Science Reviews 69: 7995.

L. Michon , R.T. van Balen , O. Merle & H. Pagnier , 2003. The Cenozoic evolution of the Roer Valley Rift System integrated at a European scale. Tectonophysics 367: 101126.

V. Mosbrugger , C.T. Gee , G. Belz & A.R. Ashraf , 1994. Three-dimensional reconstruction of an in-situ Miocene peat forest from the Lower Rhine Embayment, northwestern Germany – new methods in palaeovegetation analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 110: 295317.

V. Mosbrugger , T. Utescher & D.L. Dilcher , 2005. Cenozoic continental climatic evolution of Central Europe. Proceedings of the National Academy of Sciences of the United States of America 102 (42): 14,964–14,969.

D.K. Munsterman & H. Brinkhuis , 2004. A southern North Sea Miocene dinoflagellate cyst zonation. Netherlands Journal of Geosciences / Geologie en Mijnbouw 83 (4): 267285.

E.G. Otvos , 2000. Beach ridges – definitions and significance. Geomorphology 32: 83108.

A.J.H. Reesink & J.S. Bridge , 2007. Influence of superimposed bedforms and flow unsteadiness on formation of cross strata in dunes and unit bars. Sedimentary Geology 202: 281296.

J.-Y. Reynaud & R.W. Dalrymple , 2012. Shallow-marine tidal deposits. In: Davis, R.A., Jr & Dalrymple, R.W. (eds): Principles of tidal sedimentology. Springer: 335369.

P.E. Russell , 1993. Mechanisms for beach erosion during storms. Continental Shelf Research 13 (11): 12431265.

A. Schäfer & T. Utescher , 2014. Origin, sediment fill, and sequence stratigraphy of the Cenozoic Lower Rhine Basin (Germany) interpreted from well logs. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 165 (2): 287314.

A. Schäfer , D. Hilger , G. Gross & F. von der Hocht , 1996. Cyclic sedimentation in Tertiary Lower-Rhine Basin (Germany) – the ‘Liegendrücken’ of the brown-coal open-cast Fortuna mine. Sedimentary Geology 103: 229247.

A. Schäfer , T. Utescher & T. Mörs , 2004. Stratigraphy of the Cenozoic Lower Rhine Basin, northwestern Germany. Newsletters on Stratigraphy 40 (1/2): 73110.

A. Schäfer , T. Utescher , M. Klett & M. Valdivia-Manchego , 2005. The Cenozoic Lower Rhine Basin – rifting, sedimentation, and cyclic stratigraphy. International Journal of Earth Sciences 94: 621639.

M.E. Schumacher , 2002. Upper Rhine Graben. Role of preexisting structures during rift evolution. Tectonics 21 (1): 6-1–6-17.

W. Sissingh , 2003. Tertiary paleogeographic and tectonostratigraphic evolution of the Rhenish Triple Junction. Palaeogeography, Palaeoclimatology, Palaeo-ecology 196: 229263.

M.J.F. Stive , S.G.J. Aarninkhof , L. Hamm , H. Hanson , M. Larson , K.M. Wijnberg , R.J. Nicholls & M. Capobianco , 2002. Variability of shore and shoreline evolution. Coastal Engineering 47: 211235.

P. Stupples , 2002. Tidal cycles preserved in late Holocene tidal rhythmites, the Wainway Channel, Romney Marsh, southeast England. Marine Geology 182: 231246.

A.M. Taylor & R. Goldring , 1993. Description and analysis of bioturbation and ichnofabric. Journal of the Geological Society 150 (1): 141148.

J. Terwindt , 1988. Palaeo-tidal reconstructions of inshore tidal depositional environments. In: de Boer, P.L., van Gelder, A. & Nio, S.D. (eds): Tide-influenced sedimentary environments and facies. D. Reidel Publishing Company (Dordrecht): 233263.

N.S. Tonkin , D. McIlroy , R. Meyer & A. Moore-Turpin , 2010. Bioturbation influence on reservoir quality: a case study from the Cretaceous Ben Nevis Formation, Jeanne d'Arc Basin, offshore Newfoundland, Canada. AAPG Bulletin 94 (7): 10591078.

R.J. Uncles , 2010. Physical properties and processes in the Bristol Channel and Severn Estuary. Marine Pollution Bulletin 61: 520.

T. Utescher , V. Mosbrugger , D. Ivanov & D.L. Dilcher , 2009. Present-day climatic equivalents of European Cenozoic climates. Earth and Planetary Science Letters 284: 544552.

R.T. Van Balen , R.F. Houtgast & S.A.P.L. Cloetingh , 2005. Neotectonics of the Netherlands: a review. Quaternary Science Reviews 24 (3–4): 439454.

J. Van der Burgh , 1973. Hölzer der niederrheinischen Braunkohlenformation, 2. Hölzer der Braunkohlengruben ‘Maria Theresia’ zu Herzogenrath, ‘Zukunft West’ zu Eschweiler und ‘Victor’ (Zülpich Mitte) zu Zülpich. Nebst einer systematisch-anatomischen Bearbeitung der Gattung Pinus L. Review of Palaeobotany and Palynology 15: 73275.

K. Vanneste , M. Meghraoui & T. Camelbeeck , 1999. Late Quaternary earthquake-related soft-sediment deformation along the Belgian portion of the Feldbiss Fault, Lower Rhine Graben system. Tectonophysics 309: 5779.

J.W. Verbeek , C.S. de Leeuw , N. Parker & T.E. Wong , 2002. Characterisation and correlation of Tertiary seismostratigraphic units in the Roer Valley Graben. Netherlands Journal of Geosciences / Geologie en Mijnbouw 81 (2): 159166.

M.J. Visser , 1980. Neap-spring cycles reflected in Holocene subtidal large-scale bedforms deposits: a preliminary note. Geology 8: 543546.

W.E. Westerhoff , H.A. Kemna & W. Boenik , 2008. The confluence area of Rhine, Meuse, and Belgian rivers: Late Pliocene and Early Pleistocene fluvial history of the northern Lower Rhine Embayment. Netherlands Journal of Geosciences / Geologie en Mijnbouw 87 (1): 107125.

B.C. Yang , R.W. Dalrymple & S.S. Chun , 2005. Sedimentation on a wave-dominated, open-coast tidal flat, south-western Korea: summer tidal flat – winter shoreface. Sedimentology 52: 235252.

P.A. Ziegler , 1992. European Cenozoic rift system. In: Ziegler, P.A. (ed.): Geodynamics of rifting, volume 1. Case history studies on rifts: Europe and Asia. Tectonophysics 208: 91111.

P.A. Ziegler & P. Dèzes , 2007. Cenozoic uplift of Variscan Massifs in the Alpine foreland: timing and controlling mechanisms. Global and Planetary Change 58: 237269.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Netherlands Journal of Geosciences
  • ISSN: 0016-7746
  • EISSN: 1573-9708
  • URL: /core/journals/netherlands-journal-of-geosciences
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 21 *
Loading metrics...

Abstract views

Total abstract views: 124 *
Loading metrics...

* Views captured on Cambridge Core between 23rd January 2017 - 20th September 2017. This data will be updated every 24 hours.