Skip to main content
×
×
Home

Sediment budget and morphological development of the Dutch Wadden Sea: impact of accelerated sea-level rise and subsidence until 2100

  • Zheng Bing Wang (a1) (a2), Edwin P.L. Elias (a3), Ad J.F. van der Spek (a1) (a4) and Quirijn J. Lodder (a2) (a5)
Abstract

The Wadden Sea is a unique coastal wetland containing an uninterrupted stretch of tidal flats that span a distance of nearly 500km along the North Sea coast from the Netherlands to Denmark. The development of this system is under pressure of climate change and especially the associated acceleration in sea-level rise (SLR). Sustainable management of the system to ensure safety against flooding of the hinterland, to protect the environmental value and to optimise the economic activities in the area requires predictions of the future morphological development.

The Dutch Wadden Sea has been accreting by importing sediment from the ebb-tidal deltas and the North Sea coasts of the barrier islands. The average accretion rate since 1926 has been higher than that of the local relative SLR. The large sediment imports are predominantly caused by the damming of the Zuiderzee and Lauwerszee rather than due to response to this rise in sea level. The intertidal flats in all tidal basins increased in height to compensate for SLR.

The barrier islands, the ebb-tidal deltas and the tidal basins that comprise tidal channels and flats together form a sediment-sharing system. The residual sediment transport between a tidal basin and its ebb-tidal delta through the tidal inlet is influenced by different processes and mechanisms. In the Dutch Wadden Sea, residual flow, tidal asymmetry and dispersion are dominant. The interaction between tidal channels and tidal flats is governed by both tides and waves. The height of the tidal flats is the result of the balance between sand supply by the tide and resuspension by waves.

At present, long-term modelling for evaluating the effects of accelerated SLR mainly relies on aggregated models. These models are used to evaluate the maximum rates of sediment import into the tidal basins in the Dutch Wadden Sea. These maximum rates are compared to the combined scenarios of SLR and extraction-induced subsidence, in order to explore the future state of the Dutch Wadden Sea.

For the near future, up to 2030, the effect of accelerated SLR will be limited and hardly noticeable. Over the long term, by the year 2100, the effect depends on the SLR scenarios. According to the low-end scenario, there will be hardly any effect due to SLR until 2100, whereas according to the high-end scenario the effect will be noticeable already in 2050.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Sediment budget and morphological development of the Dutch Wadden Sea: impact of accelerated sea-level rise and subsidence until 2100
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Sediment budget and morphological development of the Dutch Wadden Sea: impact of accelerated sea-level rise and subsidence until 2100
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Sediment budget and morphological development of the Dutch Wadden Sea: impact of accelerated sea-level rise and subsidence until 2100
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
*Corresponding author. Email: zheng.wang@deltares.nl
References
Hide All
Baart, F., Van Gelder, P.H.A.J.M., de Ronde, J., Van Koningsveld, M. & Wouters, B., 2012. The effect of the 18.6-year lunar nodal cycle on regional sea-level rise estimates. Journal of Coastal Research 28: 511516.
Bartholdi, A.T., Bartholdi, J. & Kroon, A., 2010. Salt marsh stability and patterns of sedimentation across a backbarrier platform. Marine Geology 278: 3142.
Bartholomä, A. & Flemming, B.W., 2007. Progressive grain-size sorting along an intertidal energy gradient. Sedimentary Geology 202: 464472.
Becherer, J., Flöser, G., Umlauf, L. & Burchard, H., 2016. Estuarine circulation versus tidal pumping: sediment transport in a well-mixed tidal inlet. Journal of Geophysical Research, Oceans 121: 62516270.
Becherer, J., Hofstede, J., Gräwe, U., Purkiani, K., Schulz, E. & Burchard, H., 2018. The Wadden Sea in transition – consequences of sea level rise. Ocean Dynamics 68: 131151.
Beets, D.J. & Van der Spek, A.J.F., 2000. The Holocene evolution of the barrier and back-barrier basins of Belgium and the Netherlands as a function of late Weichselian morphology, relative sea-level rise and sediment supply. Netherlands Journal of Geosciences / Geologie en Mijnbouw 79: 316.
Bijsterbosch, L.W.W., 2003. Influence of relative sea level rise on tidal inlets. MSc Thesis. Delft University of Technology – report Delft Hydraulics (Delft).
Bruun, P., 1962. Sea-level rise as a cause of shore erosion. Journal of Waterways, Harbors Division 88: 117130.
Canon, D.R., French, J.R., Spencer, T., Reed, D. & Möller, I., 2000. Vertical accretion versus elevation adjustment in UK saltmarshes: an evaluation of alternative methodologies. In: Pye, K. & Allen, J.R.L. (eds): Coastal and estuarine environments. Geological Society Special Publications 175: 223238. Geological Society (London).
Carrasco, A.R., Ferreira, Ó & Roelvink, D., 2016. Coastal lagoons and rising sea level: a review. Earth-Science Reviews 154: 356368.
Christiansen, C., Vølund, G., Lund-Hansen, L. & Bartholdi, J., 2006. Wind influence on tidal flat sediment dynamics: field investigations in the Ho Bugt, Danish Wadden Sea. Marine Geology 235: 7586.
Chu, A., Wang, Z.B. & De Vriend, H.J., 2015. Analysis on residual coarse sediment transport in estuaries. Estuarine Coastal Shelf Science 163: 194205.
Church, J.A., Clark, P.U., Cazenave, A., Gregory, J.M., Jevrejeva, S., Levermann, A., Merrifield, M.A., Milne, G.A., Nerem, R.S., Nunn, P.D., Payne, A.J., Pfeffer, W.T., Stammer, D. & Unnikrishnan, A.S., 2013. Sea level change. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P.M. (eds): Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press (Cambridge): 11371216.
Cleveringa, J. & Grasmeijer, B., 2010. Meegroeivermogen en gebruiksruimte in de getijbekkens Vlie en Marsdiep; Grootschalige morfologische ontwikkelingen westelijke Waddenzee. Report A2062R3r5, Arcadis (Zwolle).
Cleveringa, J. & Oost, A.P., 1999. The fractal geometry of tidal-channel systems in the Dutch Wadden Sea. Geologie en Mijnbouw 78: 2130.
Collins, M.B., Amos, C.L. & Evans, G., 1981. Observations of some sediment-transport processes over intertidal flats, the Wash, UK. In: Nio, S.D., Schüttenhelm, R.T.E. & Van Weering, Tj.C.E. (eds): Holocene marine sedimentation in the North Sea Basin. International Association of Sedimentologists, Special Publication 5: 8198. Blackwell Scientific Publications (Oxford).
CPSL, 2001. Final report of the Trilateral Working Group on Coastal Protection and Sea Level Rise. Wadden Sea Ecosystem No. 13. Common Wadden Sea Secretariat (Wilhelmshaven).
CPSL, 2005. Coastal protection and sea level rise – solutions for sustainable coastal protection in the Wadden Sea region. Wadden Sea Ecosystem No. 21. Common Wadden Sea Secretariat (Wilhelmshaven).
CPSL, 2010. CPSL Third Report. The role of spatial planning and sediment in coastal risk management. Wadden Sea Ecosystem No. 28. Common Wadden Sea Secretariat (Wilhelmshaven).
D'Alpaos, A., Lanzoni, S., Marani, M. & Rinaldo, A., 2010. On the tidal prism-channel area relations. Journal of Geophysical Research, Earth Surface 115 (F1), F01003. doi: 10.1029/2008JF001243.
Dastgheib, A., Roelvink, J.A. & Wang, Z.B., 2008. Long-term process-based morphological modeling of the Marsdiep tidal basin. Marine Geology 256: 90100.
Davis, R.A., 1989. Morphodynamics of the West-Central Florida barrier system: the delicate balance between wave- and tide-domination. In: Van der Linden, W.J.M., Cloetingh, S.A.P.L., Kaasschieter, J.P.K., Van de Graaff, W.J.E., Vandenberghe, J. & Van der Gun, J.A.M. (eds): Coastal Lowlands, Geology and Geotechnology, Proceedings of the KNGMG Symposium on Coastal Lowlands, The Hague, 23–27 May, 1987. Kluwer Academic Publishers (Dordrecht): 225235.
Davis, R.A., 2013. A new look at barrier-inlet morphodynamics. In: Kana, T., Michel, J. & Voulgaris, G. (eds): Proceedings, Symposium in Applied Coastal Geomorphology to Honor Miles O. Hayes. Journal of Coastal Research, Special Issue 69: 1–12.
Davis, R.A. & Hayes, M.O., 1984. What is a wave-dominated coast? Marine Geology 60: 313329.
Dean, R.G., 1988. Sediment interaction at modified coastal inlets: processes and policies. In: Aubrey, D.G. & Weishar, L. (eds): Hydrodynamics and sediment dynamics of tidal inlets. Lecture Notes on coastal and estuarine studies 29. Springer-Verlag (New York): 412439.
De Boer, M., 1979. Morfologisch onderzoek Ameland. Verslag van het onderzoek op het Amelander Wantij in 1973. Report WWKZ-79.H005, Rijkswaterstaat Directie Waterhuishouding en Waterbeweging, Studiedienst Hoorn.
De Conto, R. & Pollard, D., 2016. Contribution of Antarctica to past and future sea-level rise. Nature 531: 591597.
De Fockert, A., 2008. Impact of relative sea level rise on the Amelander inlet morphology. MSc thesis. Delft University of Technology (Delft).
De Glopper, R.J., 1967. Over de bodemgesteldheid van het waddengebied. Van Zee tot Land 43. Tjeenk Willink (Zwolle): 67 pp.
Deltacommissie, 1960. Rapport Deltacommissie. Dl. 1. Eindverslag en interimadviezen. Staatsdrukkerij- en Uitgeverijbedrijf (The Hague).
Deltacommissie, 2008. Working together with water, Report of Deltacommissie 2008.
De Swart, H.E. & Zimmerman, J.T.F., 2009. Morphodynamics of tidal inlet systems. Annual Review of Fluid Mechanics 41: 203229.
De Vriend, H.J., 1991. Mathematical modelling and large-scale coastal behaviour. Part 2: Predictive Models. Journal of Hydraulic Research 29: 741753.
De Waal, J.A., Roest, J.P.A., Fokker, P.A., Kroon, I.C., Muntendam-Bos, A.G., Oost, A.P. & Van Wirdum, G., 2012. The effective subsidence capacity concept: how to assure that subsidence in the Wadden Sea remains within defined limits? Netherlands Journal of Geosciences / Geologie en Mijnbouw 91: 385399.
Dissanayake, D.M.P.K., Roelvink, J.A. & Van der Wegen, M., 2009a. Modelled channel patterns in a schematized tidal inlet. Coastal Engineering 56: 10691083.
Dissanayake, D.M.P.K., Ranasinghe, R. & Roelvink, J.A., 2009b. Effect of sea level rise on tidal inlet evolution: a numerical modelling approach. Journal of Coastal Research, Special Issue 56: 942946.
Dissanayake, D.M.P.K., Ranasinghe, R. & Roelvink, J.A., 2012. The morphological response of large tidal inlet/basin systems to relative sea level rise. Climate Change 113: 253276.
Dronkers, J., 1986. Tidal asymmetry and estuarine morphology. Netherlands Journal of Sea Research 20: 117131.
Duran-Matute, M., Gerkema, T., de Boer, G.J., Nauw, J.J. & Gräwe, U., 2014. Residual circulation and freshwater transport in the Dutch Wadden Sea: a numerical modelling study. Ocean Sciences 10: 611632.
Edmonds, D.A. & Slingerland, R.L., 2010. Significant effect of sediment cohesion on delta morphology. Nature Geoscience 3: 105109.
Eisma, D. & Ridderinkhof, H., 1998. Sediment transport in intertidal areas. In: Eisma, D. (ed.): Intertidal deposits; river mouths, tidal flats, and coastal lagoons. CRC Press, Marine Science Series (Boca Raton, FL): 363381.
Elias, E.P.L., 2006. Morphodynamics of Texel Inlet. PhD Thesis. Delft University of Technology. Delft University Press (Delft): 261 pp. (https://repository.tudelft.nl/islandora/object/uuid:92ad4ac0-9d54-4f5f-8536-80b7782a6aa6?collection=research)
Elias, E.P.L., 2017. Understanding the present-day morphodynamics of Ameland inlet. Report 1220339-006-ZKS-006, Deltares (Delft).
Elias, E.P.L. & Hansen, J., 2012. Understanding processes controlling sediment transports at the mouth of a highly energetic inlet system (San Francisco Bay, CA). Marine Geology 345: 207220.
Elias, E.P.L. & Van der Spek, A.J.F., 2006. Long-term evolution of Texel Inlet and its ebb-tidal delta (the Netherlands). Marine Geology 225: 521.
Elias, E.P.L. & Van der Spek, A.J.F., 2017. Dynamic preservation of Texel Inlet, the Netherlands: understanding the interaction of an ebb-tidal delta with its adjacent coast. Netherlands Journal of Geosciences / Geologie en Mijnbouw 96: 293317.
Elias, E.P.L., Van der Spek, A.J.F., Wang, Z.B. & De Ronde, J.G., 2012. Morphodynamic development and sediment budget of the Dutch Wadden Sea over the last century. Netherlands Journal of Geosciences / Geologie en Mijnbouw 91: 293310.
Elias, E.P.L., Teske, R., Van der Spek, A. & Lazar, M., 2015. Modeling tidal inlet morphodynamics on medium time scales. In: Wang, P., Rosati, J.D. & Cheng, J. (eds): The Proceedings of the Coastal Sediments 2015, San Diego, CA, 11–14 May, 2015, CD-ROM, paper 0230: 14 pp.
Escoffier, F.F., 1940. The stability of tidal inlets. Shore and Beach 8: 114115.
Evans, G. & Collins, M.B., 1975. The transportation and deposition of suspended sediments over the intertidal flats of the Wash. In: Hails, J. & Carr, A. (eds), Nearshore sediment dynamics and sedimentation. An interdisciplinary review. John Wiley and Sons: 273306.
Eysink, W.D., 1990. Morphologic response of tidal basins to changes. 22nd International Conference on Coastal Engineering, Delft, The Netherlands: 1948–1961. Conference proceedings.
Eysink, W.D. & Biegel, E.J., 1992. Impact of sea level rise on the morphology of the Wadden Sea in the scope of its ecological function. ISOS*2 Project, phase 2. Report H1300, WL|Delft Hydraulics (Delft).
Fagherazzi, S., Palermo, C., Rulli, M.C., Carniello, L. & Defina, A., 2007. Wind waves in shallow microtidal basins and the dynamic equilibrium of tidal flats. Journal of Geophysical Research – Earth Surface, 112, F02024. doi: 10.1029/2006JF000572.
FitzGerald, D.M., 1996. Geomorphic variability and morphologic and sedimentologic controls on tidal inlets. Journal of Coastal Research 23: 4771.
Flemming, B.W. & Bartholomä, A., 1997. Response of the Wadden Sea to a rising sea level: a predictive empirical model. Deutsche Hydrographische Zeitschrift 49: 343353.
Flemming, B.W. & Davis, R.A., 1994. Holocene evolution, morphodynamics and sedimentology of the Spiekeroog barrier island system (Southern North Sea). Senckenbergiana Maritima 24: 117155.
Flemming, B. & Ziegler, K., 1995. High-resolution grain size distribution patterns and textural trends in the backbarrier environment of Spiekeroog Island (southern North Sea). Senckenbergiana Maritima 26: 124.
Fokker, P.A., Van Leijen, F., Orlic, B., Van der Marel, H. & Hanssen, R., 2018. Subsidence in the Dutch Wadden Sea. Netherlands Journal of Geosciences / Geologie en Mijnbouw, this issue.
Friedrichs, C.T., 1995. Stability shear stress and equilibrium cross-sectional geometry of sheltered tidal channels. Journal of Coastal Research 11: 10621074.
Friedrichs, C.T. & Aubrey, D.G., 1988. Non-linear tidal distortion in shallow well-mixed estuaries: a synthesis. Estuarine Coastal Shelf Science 27: 521545.
Galappatti, R. & Vreugdenhil, C.B., 1985. A depth-integrated model for suspended sediment transport. Journal of Hydraulic Research 23: 359377.
Gatto, V.M., Van Prooijen, B.C. & Wang, Z.B., 2017. Net sediment transport in tidal basins: quantifying the tidal barotropic mechanisms in a unified framework. Ocean Dynamics 67: 13851406.
Geleynse, N., Storms, J.E.A., Walstra, D.J.R., Jagers, H.R.A., Wang, Z.B. & Stive, M.J.F., 2011. Controls on river delta formation; insights from numerical modelling. Earth and Planetary Science Letters 302: 217226.
Groen, P., 1967. On the residual transport of suspended matter by an alternating tidal current. Netherlands Journal of Sea Research 3: 564574.
Guo, L., Van der Wegen, M., Roelvink, J.A. & He, Q., 2014. The role of river flow and tidal asymmetry on 1-D estuarine morphodynamics. Journal of Geophysical Research, Earth Surface 119: 23152334.
Guo, L., Van der Wegen, M., Roelvink, J.A., Wang, Z.B. & He, Q., 2015. Long-term, process-based morphodynamic modeling of a fluvio-deltaic system, part 1: the role of river discharge. Continental Shelf Research 109: 95111.
Hayes, M.O., 1975. Morphology of sand accumulation in estuaries: an introduction to the symposium. In: Cronin, L.E. (ed.): Estuarine research, vol. 2. Academic Press (New York): 322.
Hayes, M.O., 1979. Barrier island morphology as a function of tidal and wave regime. In: Leatherman, S.P. (ed.), Barrier islands: from the Gulf of St Lawrence to the Gulf of Mexico. Academic Press (New York): 127.
Hibma, A., De Vriend, H.J. & Stive, M.J.F., 2003a. Numerical modelling of shoal pattern formation in well-mixed elongated estuaries. Estuarine Coastal Shelf Science 57: 981991.
Hibma, A., Schuttelaars, H.M. & Wang, Z.B., 2003b. Comparison of longitudinal equilibrium profiles of estuaries in idealized and process-based models. Ocean Dynamics 53: 252269.
Hibma, A., Schuttelaars, H.M. & De Vriend, H.J., 2004. Initial formation and long-term evolution of channel-shoal patterns. Continental Shelf Research 24: 16371650.
Hinkel, J., Nicholls, R.J., Tol, R.S.J., Wang, Z.B., Hamilton, J.M., Boot, G., Vafeidis, A.T., McFadden, L., Ganopolski, A. & Klein, R.J.T., 2013. A global analysis of erosion of sandy beaches and sea-level rise: an application of DIVA. Global and Planetary Change 111: 150158.
Hoeksema, H.J., Mulder, H.P.J., Rommel, M.C., De Ronde, J.G. & De Vlas, J., 2004. Bodemdalingstudie Waddenzee 2004. Vragen en onzekerheden opnieuw beschouwd. Report RIKZ/2004.025, Rijkswaterstaat, National Institute for Coastal and Marine Management RIKZ (Haren): 138 pp.
Hofstede, J.L.A., Becherer, J. & Burchard, H., 2018. Are Wadden Sea tidal systems with a higher tidal range more resilient against sea level rise? Journal of Coastal Conservation 22: 7178.
Huisman, B.J.A., Ruessink, B.G., De Schipper, M.A., Luijendijk, A.P. & Stive, M.J.F., 2018. Modelling of bed sediment composition changes at the lower shoreface of the Sand Motor. Coastal Engineering 132: 3349.
Hulscher, S., Meire, P., Rienstra, G. & Urai, J., 2016. Position paper Zoutwinning onder de Waddenzee. Position paper 2016-04, Waddenacademie (Leeuwarden).
Kabat, P., Jacobs, C.M.J., Hutjes, R.W.A., Hazeleger, W., Engelmoer, M., Witte, J.P.M., Roggema, R., Lammerts, E.J., Bessembinder, J., Hoekstra, P. & Van den Berg, M., 2009. Klimaatverandering en het Waddengebied; Position paper Klimaat en Water. Position paper, Waddenacademie (Leeuwarden).
Kentish, M.J., 2001. Coastal salt marsh systems in the U.S.: a review of anthropogenic impacts. Journal of Coastal Research 17: 731748.
KNMI, 2017. Extreme zeespiegelstijging in de 21e eeuw. Koninklijk Nederlands Meteorologisch Instituut (KNMI). News item, 6 April, http://knmi.nl/over-het-knmi/nieuws/extreme-zeespiegelstijging-in-de-21e-eeuw.
Kohsiek, L.H.M., Mulder, J.P.M., Louters, T. & Berben, F., 1987. De Oosterschelde naar een nieuw onderwaterlandschap. Eindrapport Project Geomor. Report DGW.AO 87.029 – Geomor report 87.02, Rijkswaterstaat, Tidal Waters Division (The Hague/Middelburg).
Kohsiek, L.H.M., Buist, H.J., Bloks, P., Misdorp, R., Van den Berg, J.H. & Visser, J., 1988. Sedimentary processes on a sandy shoal in a mesotidal estuary (Oosterschelde, The Netherlands). In: De Boer, P.L., Van Gelder, A. & Nio, S.D. (eds): Tide-influenced sedimentary environments and facies. D. Reidel Publishing Company (Dordrecht): 201214.
Kragtwijk, N.G., Zitman, T.J., Stive, M.J.F. & Wang, Z.B., 2004. Morphological response of tidal basins to human interventions. Coastal Engineering 51: 207221.
Krögel, F., 1995. Sedimentverteilung und Morphodynamik des Otzumer Ebbdeltas (südliche Nordsee). Senckenbergiana Maritima 25: 127135.
Krol, J., 2017. Wadplaat sedimentatie bij Ameland 2000–2016. Report NatuurCentrum Ameland.
Kuiters, L., De Vries, D., Brus, D., Heidema, N., Huiskes, R., Slim, P., Van Dobben, H. & Krol, J., 2017. Monitoring effecten van bodemdaling op Oost-Ameland, 6 Vegetatiedynamiek in duinen en duinvalleien op Oost-Ameland. In: Monitoring effecten van bodemdaling op Ameland-Oost: evaluatie na 30 jaar gaswinning (www.waddenzee.nl → Themas → Bodemdaling Ameland).
Le Bars, D., Drijfhout, S. & De Vries, H., 2017. A high-end sea level rise probabilistic projection including rapid Antarctic ice sheet mass loss. Environmental Research Letters 12 (4): 044013. http://iopscience.iop.org/article/10.1088/1748-9326/aa6512/pdf.
Lesser, G.R., 2009. An approach to medium-term coastal morphological modelling. PhD Thesis. UNESCO-IHE (Delft).
Lesser, G.R., Roelvink, J.A., Van Kester, J.A.T.M. & Stelling, G.S., 2004. Development and validation of a three-dimensional model. Coastal Engineering 51: 883915.
Lodder, Q., 2015. Een conceptuele beschrijving van de import van de Nederlandse getijdenbekkens. Internal memorandum Rijkswaterstaat (Lelystad).
Luijendijk, A.P., Ranasinghe, R., De Schipper, M.A., Huisman, B.J.A., Swinkels, C.M., Walstra, D.J.R. & Stive, M.J.F., 2017. The initial morphological response of the Sand Engine: a process-based modelling study. Coastal Engineering 119: 114.
Madsen, A.T., Murray, A.S., Andersen, T.J. & Pejrup, M., 2007. Temporal changes of accretion rates on an estuarine salt marsh during the late Holocene – reflection of local sea level changes? The Wadden Sea, Denmark. Marine Geology 242: 221233.
Marciano, R., Wang, Z.B., Hibma, A. & De Vriend, H.J., 2005. Modeling of channel patterns in short tidal basins. Journal of Geophysical Research 110, F01001. doi: 10.1029/2003JF000092.
Meehl, G.A., Stocker, T.F., Collins, W.D., Friedlingstein, P., Gaye, A.T., Gregory, J.M., Kitoh, A., Knutti, R., Murphy, J.M., Noda, A., Raper, S.C.B., Watterson, I.G., Weaver, A.J. & Zhao, Z.C., 2007. Global climate projections. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. & Miller, H.L. (eds): Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press (Cambridge): 747845.
Morris, J.T., Sundareshwar, P.V., Nietch, C.T., Kjerfve, B. & Canon, D.R., 2002. Responses of coastal wetlands to rising sea level. Ecology 83: 28692877.
Nederhoff, K., Smits, B. & Wang, Z.B., 2017. KPP Wadden, Data analyse: getij en morfologie. Report 11200521-000-ZKS-0002, Deltares (Delft).
Nichols, M.M., 1989. Sediment accumulation rates and relative sea-level rise in lagoons. Marine Geology 88: 201219.
Nyandwi, N., 1998. Sediment distribution patterns in the back-barrier areas of the Wadden Sea, Spiekeroog Island, Germany. In: Alexander, C., Davis, R.A. Jr & Henry, V.J. (eds): Tidalites: processes and products. SEPM (Society for Sedimentary Geology), Special Publication 61: 1522.
O'Brien, M.P., 1931. Estuary tidal prisms related to entrance areas. Civil Engineering 1: 738739.
Oertel, G.F., 1988. Processes of sediment exchange between tidal inlets, ebb deltas and barrier islands. In: Aubrey, D.G. & Weishar, L. (eds): Hydrodynamics and sediment dynamics of tidal inlets. Lecture Notes on Coastal and Estuarine Studies 29. Springer-Verlag (New York): 297318.
Oost, A.P., 1995. Dynamics and sedimentary development of the Dutch Wadden Sea with emphasis on the Frisian Inlet. A study of barrier islands, ebb-tidal deltas, inlets and drainage basins. Geologica Ultraiectina 126: 454 pp.
Oost, A.P. & De Boer, P.L., 1994. Sedimentology and development of barrier islands, ebb-tidal deltas, inlets and backbarrier areas of the Dutch Wadden Sea. Senckenbergiana Maritima 24: 65115.
Piening, H., Van der Veen, W. & Van Eijs, R., 2017. Monitoring effecten van bodemdaling op Oost-Ameland, 1 Bodemdaling. In: Monitoring effecten van bodemdaling op Ameland-Oost: evaluatie na 30 jaar gaswinning (www.waddenzee.nl → Themas → Bodemdaling Ameland).
Pierik, H.J., Cohen, K.M., Vos, P.C., Van der Spek, A.J.F. & Stouthamer, E., 2017. Late Holocene coastal-plain evolution of the Netherlands: the role of natural preconditions in human-induced sea ingressions. Proceedings of the Geologists’ Association 128: 180197.
Pilkey, O.H., Young, R.S., Riggs, S.R., Smith, A.W.S., Wu, H. & Pilkey, W.D., 1993. The concept of shoreface profile of equilibrium: a critical review. Journal of Coastal Research 9: 255278.
Postma, H., 1961. Transport and accumulation of suspended matter in the Dutch Wadden Sea. Netherlands Journal of Sea Research 1: 148190.
Postma, H., 1967. Sediment transport and sedimentation in the estuarine environment. In: Lauff, G.H. (ed.): Estuaries. AAAS Publication 83. American Association for the Advancement of Science (Washington DC): 158179.
Renger, E. & Partenscky, H.W., 1974. Stability criteria for tidal basins. 14th Coastal Engineering Conference, ASCE, vol. 2: 1605–1618. Conference proceedings.
Schüttenhelm, R., 2017. De toekomst van de Waddenzee: een stijgende zeespiegel over een dalende bodem, Wetenschappelijke inzichten over zeespiegelstijging, sedimentatie en bodemdaling – en een concreet verdrinkingsrisico binnen de 21ste eeuw. Report Waddenvereniging (Harlingen).
Shchepetkin, A.F. & McWilliams, J.C., 2005. The Regional Ocean Modeling System: a split-explicit, free-surface, topography following coordinates ocean model. Ocean Modeling 9: 347404.
Steetzel, H.J. & Wang, Z.B., 2003. Development and application of a large-scale morphological model of the Dutch coast, Phase 2: formulation and application of the PONTOS model 1.4. Report Z3334, WL|Delft Hydraulics (Delft).
Stive, M.J.F. & Eysink, W.D., 1989. Voorspelling Ontwikkeling Kustlijn 1990–2090. Fase 3. Deelrapport 3.1: Dynamisch Model van het Nederlandse Kustsysteem. Report H825, Waterloopkundig Laboratorium (Delft): 66 pp.
Stive, M.J.F. & Wang, Z.B., 2003. Morphodynamic modeling of tidal basins and coastal inlets. In: Lakhan, C. (ed.): Advances in coastal modeling. Elsevier Science (Amsterdam): 367392.
Stive, M.J.F., Roelvink, J.A. & De Vriend, H.J., 1990. Large-scale coastal evolution concept. In: Louisse, C.J., Stive, M.J.F. & Wiersma, J. (eds): The Dutch coast; report of a session on the 22nd International Conference on Coastal Engineering 1990, Paper 9: 13 pp.
Stive, M.J.F., Wang, Z.B., Ruol, P. & Buijsman, M.C., 1998. Morphodynamics of a tidal lagoon and adjacent coast. 8th International Biennial Conference on Physics of Estuaries and Coastal Seas, The Hague: 397–407. Conference proceedings.
Teske, R., 2013. Tidal inlet channel stability in long term process based modelling. MSc Traineeship Report. Deltares (Delft): 78 pp.
Townend, I., Wang, Z.B., Stive, M. & Zhou, Z., 2016a. Development and extension of an aggregated scale model: part 1. Background to ASMITA. China Ocean Engineering 30: 483504.
Townend, I., Wang, Z.B., Stive, M. & Zhou, Z., 2016b. Development and extension of an aggregated scale model: part 2. Extensions to ASMITA. China Ocean Engineering 30: 651670.
Van de Kreeke, J. & Robaczewska, K.B., 1993. Tide induced residual transport of coarse sediment; application to the Ems estuary. Netherlands Journal of Sea Research 31: 209220.
Van de Kreeke, J., Brouwer, R.L., Zitman, T.J. & Schuttelaars, H.M., 2008. The effect of a topographic high on the morphological stability of a two-inlet bay system. Coastal Engineering 55: 319332.
Van der Molen, J. & Van Dijck, B., 2000. The evolution of the Dutch and Belgian coast and the role of sand supply from the North Sea. Global and Planetary Change 27: 223244.
Van der Spek, A.J.F., 1994. Large-scale evolution of Holocene tidal basins in the Netherlands. PhD Thesis. Utrecht University (Utrecht): 191 pp.
Van der Spek, A.J.F., 1995. Reconstruction of tidal inlet and channel dimensions in the Frisian Middelzee, a former tidal basin in the Dutch Wadden Sea. In: Flemming, B.W. & Bartholomä, A. (eds): Tidal signatures in modern and ancient sediments. International Association of Sedimentologists, Special Publication 24: 239–258.
Van der Spek, A.J.F. & Beets, D.J., 1992. Mid-Holocene evolution of a tidal basin in the western Netherlands: a model for future changes in the northern Netherlands under conditions of accelerated sea-level rise? Sedimentary Geology 80: 185197.
Van der Spek, A. & Lodder, Q., 2015. A new sediment budget for the Netherlands: the effect of 15 years of nourishing (1991–2005). In: Wang, P., Rosati, J.D. & Cheng, J. (eds): The Proceedings of the Coastal Sediments 2015, San Diego, CA, 11–14 May, 2015, CD-ROM, paper 0074: 12 pp.
Van der Spek, A., Elias, E., Lodder, Q. & Hoogland, R., 2015. Toekomstige Suppletievolumes – Eindrapport. Report 1208140-005-ZKS-0001, Deltares (Delft) – Rijkswaterstaat WVL (Lelystad): 99 pp.
Van der Wegen, M., 2009. Modeling morphodynamic evolution in alluvial estuaries. PhD Thesis. UNESCO-IHE (Delft).
Van der Wegen, M. & Roelvink, J.A., 2008. Long-term morphodynamic evolution of a tidal embayment using a two-dimensional, process-based model. Journal of Geophysical Research 113, C03016. doi: 10.1029/2006JC003983.
Van der Wegen, M., Wang, Z.B., Savenije, H.H.G. & Roelvink, J.A., 2008. Long-term morphodynamic evolution and energy dissipation in a coastal plain, tidal embayment. Journal of Geophysical Research 113, F03001. doi: 10.1029/2007JF000898.
Van der Wegen, M., Dastgheib, A. & Roelvink, J.A., 2010. Morphodynamic modeling of tidal channel evolution in comparison to empirical PA relationship. Coastal Engineering 57: 827837.
Van der Wegen, M., Jaffe, B., Foxgrover, A. & Roelvink, D., 2017. Mudflat morphodynamics and the impact of sea level rise in South San Francisco Bay. Estuaries and Coasts 40: 3749. doi: 10.1007/s12237-016-0129-6.
Van Goor, M.A., Zitman, T.J., Wang, Z.B. & Stive, M.J.F., 2003. Impact of sea-level rise on the morphological equilibrium state of tidal inlets. Marine Geology 202: 211227.
Van Koningsveld, M. & Mulder, J.P.M., 2004. Sustainable coastal policy developments in the Netherlands. A systematic approach revealed. Journal of Coastal Research 20: 375385.
Van Prooijen, B.C. & Wang, Z.B., 2013. A 1D model for tides, waves and fine sediment in short tidal basins – application to the Wadden Sea. Ocean Dynamics 63: 12331248.
Van Rijn, L.C., 1984a. Sediment transport, Part I: Bed load transport. Journal of Hydraulic Engineering 110: 14311456.
Van Rijn, L.C., 1984b. Sediment transport, Part II: Suspended load transport. Journal of Hydraulic Engineering 110: 16131641.
Van Straaten, L.M.J.U., 1961. Sedimentation in tidal flat areas. Journal of the Alberta Society of Petroleum Geologists 9 (7): 203226.
Van Straaten, L.M.J.U., 1975. De sedimenthuishouding van de Waddenzee. In: Swennen, C., De~Wilde, P.A.W.J. & Haeck, J. (eds): Symposium Waddenonderzoek, 7 april, 1973. Mededeling Werkgroep Waddenzee 1: 5–20 (in Dutch, with English summary).
Van Straaten, L.M.J.U. & Kuenen, P.H., 1957. Accumulation of fine grained sediments in the Dutch Wadden Sea. Geologie en Mijnbouw 19: 329354.
Van Wijnen, H.J. & Bakker, J.P., 2001. Long-term surface elevation change in salt marshes: a prediction of marsh response to future sea-level rise. Estuarine Coastal Shelf Science 52: 381390.
Vermeersen, L.L.A., Slangen, A.B.A., Gerkema, T., Baart, F., Cohen, K.M., Dangendorf, S., Duran-Matute, M., Frederikse, T., Grinsted, A., Hijma, M.P., Jevrejeva, S., Kiden, P., Kleinherenbrink, M., Meijles, E.W., Palmer, M.D., Rietbroek, R., Riva, R.E.M., Schulz, E., Slobbe, D.C., Simpson, M.J.R., Sterlini, P., Stocchi, P., Van de Wal, R.S.W. & Van der Wegen, M., 2018. Sea level change in the Dutch Wadden Sea. Netherlands Journal of Geosciences / Geologie en Mijnbouw, this issue.
Vinther, N., Christiansen, C., Bartholdy, J., Sorensen, C. &, Lund-Hansen, L.C., 2004. Sediment transport across a tidal divide in the Danish Wadden Sea. Geografisk Tidsskrift – Danish Journal of Geography 104: 7186.
Vos, P.C., 2015. Origin of the Dutch coastal landscape: long-term landscape evolution of The Netherlands during the Holocene described and visualized in national, regional and local palaeogeographical map series. PhD Thesis. Utrecht University. Barkhuis (Groningen): 372 pp.
Vroom, J., 2011. Tidal divides, a study on a simplified case and the Dutch Wadden Sea. MSc Thesis. Delft University of Technology (Delft).
Walton, T.L. & Adams, W.D., 1976. Capacity of inlet outer bars to store sand. 15th Coastal Engineering Conference: 1919–1937. Conference proceedings.
Wang, Y., Yu, Q., Jiao, J., Tonnon, P.K., Wang, Z.B. &, Gao, S., 2016. Coupling bedform roughness and sediment grain-size sorting in modelling of tidal inlet incision. Marine Geology 381: 128141.
Wang, Z.B., 1992. Theoretical analysis on depth-integrated modelling of suspended sediment transport. Journal of Hydraulic Research 30: 403421.
Wang, Z.B. & Eysink, W.D., 2005. Abiotische effecten van bodemdaling in de Waddenzee door gaswinning. Report Z3995, WL|Delft Hydraulics (Delft).
Wang, Z. & Van der Spek, A., 2015. Importance of mud for morphological response of tidal basins to sea level rise. In: Wang, P., Rosati, J.D. & Cheng, J. (eds): The Proceedings of the Coastal Sediments 2015, San Diego, CA, 11–14 May, 2015, CD-ROM, paper 0208: 10 pp.
Wang, Z.B., Louters, T. & De Vriend, H.J., 1995. Morphodynamic modelling for a tidal inlet in the Wadden Sea. Marine Geology 126: 289300.
Wang, Z.B., De Vriend, H.J., Stive, M.J.F. & Townend, I.H., 2008. On the parameter setting of semi-empirical long-term morphological models for estuaries and tidal lagoons. In: Dohmen-Jansen, C.M. & Hulscher, S.J.M.H. (eds): River, coastal and estuarine morphodynamics, RCEM 2007. Taylor & Francis (London): 103111.
Wang, Z.B., Hoekstra, P., Burchard, H., Ridderinkhof, H., De Swart, H.E. & Stive, M.J.F., 2012. Morphodynamics of the Wadden Sea and its barrier island system. Ocean and Coastal Management 68: 3957.
Wang, Z.B., Vroom, J., Van Prooijen, B.C., Labeur, R.J. & Stive, M.J.F., 2013. Movement of tidal watersheds in the Wadden Sea and its consequences on the morphological development. International Journal of Sediment Research 28: 162171.
Wang, Z.B., Cleveringa, J. & Oost, A., 2017. Morfologische effecten bodemdaling in relatie tot gebruiksruimte. Report 1230937-000. Deltares (Delft).
Winterwerp, J.C., Vroom, J., Wang, Z.B., Krebs, M., Hendriks, E.C.M., Van Maren, D.S., Schrottke, K., Borgsmüller, C. & Schöl, A., 2017. SPM response to tide and river flow in the hyper-turbid Ems River. Ocean Dynamics 67: 559583.
Zagwijn, W.H., 1986. Nederland in het Holoceen. Geological Survey of The Netherlands (Haarlem): 46 pp.
Zhou, Z., Coco, G., Townend, I., Olabarrieta, M., Van der Wegen, M., Gong, Z., D'Alpaos, A., Gao, S., Jaffe, B.E., Gelfenbaum, G., He, Q., Wang, Y., Lanzoni, S., Wang, Z.B., Winterwerp, H. & Zhang, C., 2017. Is ‘Morphodynamic Equilibrium’ an oxymoron? Earth Science Reviews 165: 257267.
Zimmermann, J.T.F., 1974. Circulation and water exchange near a tidal watershed in the Dutch Wadden Sea. Netherlands Journal of Sea Research 8: 126138.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Netherlands Journal of Geosciences
  • ISSN: 0016-7746
  • EISSN: 1573-9708
  • URL: /core/journals/netherlands-journal-of-geosciences
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed