Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T23:55:46.869Z Has data issue: false hasContentIssue false

A sporomorph ecogroup model for the Northwest European Jurassic - Lower Cretaceous II : Application to an exploration well from the Dutch North Sea

Published online by Cambridge University Press:  01 April 2016

O.A. Abbink*
Affiliation:
TNO-NITG, P.O. Box 80015, NL-3508TA Utrecht, The Netherlands; e-mail:o.abbink@nitg.tno.nl
J.H.A. Van Konijnenburg-Van Cittert
Affiliation:
Laboratory of Palaeobotany and Palynology, Utrecht University, Budapestlaan 4, NL-3584 CD Utrecht, The Netherlands; e-mail:j.h.a.vankonijnenburg@bio.uu.nl, h.visscher@bio.uu.nl
C.J. Van der Zwan
Affiliation:
SIEP-SEPTAR, P.O. Box 80, NL-2280 AB Rijswijk, The Netherlands; e-mail:kees.vanderzwan@shell.com
H. Visscher
Affiliation:
TNO-NITG, P.O. Box 80015, NL-3508TA Utrecht, The Netherlands; e-mail:o.abbink@nitg.tno.nl Laboratory of Palaeobotany and Palynology, Utrecht University, Budapestlaan 4, NL-3584 CD Utrecht, The Netherlands; e-mail:j.h.a.vankonijnenburg@bio.uu.nl, h.visscher@bio.uu.nl
*
*Corresponding author
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Jurassic shallow marine to non-marine depositional sequences are among the most important economic targets in the North Sea. Detailed, ‘high resolution’ stratigraphy of these sequences has become a necessity in both predictive geological exploration models as well as in production reservoir models. In these paralic sequences, palynomorphs are the most abundant (micro) fossil group. Palynology is increasingly challenged to improve the biostratigraphic control, and to support the sequence stratigraphical framework. Based on a recently developed, conceptual Sporomorph EcoGroup model, the quantitative distribution patterns of terrestrial palynomorphs are grouped in six Sporomorph EcoGroups (SEGs), viz. Upland, Lowland, River, Pioneer, Coastal, and Tidally-influenced SEG. Application of the SEG model to data from a marginal marine, uppermost Callovian - Middle Oxfordian section of NAM well F17-4 from the southern part of the Central North Sea Graben allows the recognition of sea-level fluctuations and climate changes. A marked palaeoclimatic shift occurred in the earliest Middle Oxfordian. The relatively cool-subtropical, humid climate changed into a warmer, subtropical-tropical, drier climate. The sea-level reconstructions based on the SEG model are validated against a latest Callovian - Earliest Oxfordian depositional sequence.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2004

References

Abbink, O.A., 1998. Palynological investigations in the Jurassic of the North Sea region. LPP Contribution Series 8: 192 pp.Google Scholar
Abbink, O.A., Targarona, J., Brinkhuis, H. & Visscher, H., 2001. Late Jurassic to earliest Cretaceous palaeoclimatic evolution of the Southern North Sea. Global and Planetary Change 30: 231–256.Google Scholar
Abbink, O.A., Van Konijnenburg-Van Cittert, J.H.A. & Visscher, H., 2004. A Sporomorph Ecogroup Model for the Northwest European Jurassic - Lower Cretaeous I - Concepts and framework. Netherlands Journal of Geociences / Geologie en Mijnbouw 83, 1: 389–404.Google Scholar
Arkell, , 1956. Jurassic Geology of the world, Edinburgh: 806 pp.Google Scholar
Bohacs, K. & Suter, J., 1997. Sequence stratigraphic distribution of coaly rocks, fundamental controls and paralic examples. Bulletin of the American Association of Petroleum Geologists: 81: 1612–1639.Google Scholar
Brown, S., 1990. Jurassic. In: Glennie, K.W. (Ed.). Introduction to the Petroleum Geology of the North Sea: 219–254.Google Scholar
Cariou, E. & Hantzpergue, P., 1997. Biostratigraphie du Jurassique Ouest-Européen et Méditerranéen, Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, 17: 440 pp.Google Scholar
Chaloner, W.G. & Muir, M., 1968. Spores and Floras. In: Murchison, D. and Westall, T.S. (Eds). Coal and coal bearing strata. Oliver and Boyd, Edinburgh: 127–146.Google Scholar
Coe, L. A., 1995 A comparison of the Oxfordian successions of Dorset, Oxfordshire, and Yorkshire. In: Taylor, P.D. (Ed.), Field Geology of the British Jurassic. Geological Society, London: 151–172.Google Scholar
Cross, T., 1988. Controls on coal distribution in transgressive-regressive cycles, Upper Cretaceous. In: Wilgus, C.K., Hastings, B.S., et al. (Eds). Sea Level Changes; An Integrated Approach. Special Publication of the Society of Economists, Paleontologists and Mineralogists, 4: 371–380.Google Scholar
DeGraciansky, P.-C, Hardenbol, J., Jacquin, T., Vail, P.R. & Farley, M.B., 1999. Jurassic sequence chronostratigraphy/ biochronostratigraphy. In: De Graciansky, et al. (Eds), Mesozoic-Cenozoic Sequence Stratigraphy of European Basins. Special Publication of the Society of Economists, Paleontologists and Mineralogists 60: Charts 6 and 7.CrossRefGoogle Scholar
Frakes, L.A., Francis, J.E. & Syktus, J.I., 1992. Climate Modes of the Phanerozoic, Cambridge University Press: 274 pp.CrossRefGoogle Scholar
Grime, J.P., 1979. Plant Strategies & Vegetation Processes, Sheffield: 222 pp.Google Scholar
Gygi, R.A., Coe, A.L & Vail, P.R., 1999. Sequence stratigraphy of the Oxfordian and Kimmeridgian stages (Late Jurassic) in Northern Switzerland. In: De Graciansky, et al. (Eds), Mesozoic-Cenozoic Sequence Stratigraphy of European Basins. Special Publication of the Society of Economists, Paleontologists and Mineralogists, 60: 527–544.Google Scholar
Hallam, A., 1984. Continental humid and arid zones during the Jurassic and Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology47: 195–223.Google Scholar
Hallam, A., 1985 A review of Mesozoic climates. Journal of the Geological Society of London, 142: 433–445.Google Scholar
Hallam, A., 1994. Jurassic climates as inferred from the sedimentary and fossil record. In: Allen, J.R.L., Hoskins, B.J., Sellwood, B.W., Spicer, R.A. & Valdes, P.J. (Eds), Palaeoclimates and their Modelling. The Royal Society, Chapman, London: 79–88.Google Scholar
Hallam, A., Grose, J. A. & Ruffell, A.H., 1991. Palaeoclimatic significance of changes in clay mineralogy across the Jurassic-Cretaceous boundary in England and France. Palaeogeography, Palaeoclimatology, Palaeoecology, 81: 173–187.Google Scholar
Haq, B.U., Hardenbol, J., & Vail, P.R., 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea level change. In: Wilgus, C.K., Hastings, B.S., et al. (Eds), Sea Level Changes; An Integrated Approach. Special Publication of the Society of Economists, Paleontologists and Mineralogists, 42: 71–108.Google Scholar
Herngreen, G.F.W., Kerstholt, S.J. & Munsterman, D.K., 2000. Callovian-Ryazanian (‘upper Jurassic’) palynostratigraphy of the Central North Sea Graben and Vlieland Basin, the Netherlands. Mededelingen Nederlands Instituut voor Toegepaste Geowetenschappen TNO 63: 1–99.Google Scholar
Herngreen, G.F.W. & Wong, Th.E., 1989. Revision of the ‘Late Jurassic’ stratigraphy of the Dutch Central North Sea Graben. Geologie en Mijnbouw 68: 73–105.Google Scholar
Heusser, L., 1979. Spores and pollen in the marine realm. In: Haq, B.U. and Boersma, A. (Eds). Introduction to marine micropalaeontology. Elsevier, New York: 327–339.Google Scholar
Jacquin, T., Dardeau, G., Durlet, C., DeGraciansky, P.-C. & Hantzpergue, P., 1999. The North Sea cycle: an overview of 2ndorder Transgressive/Regressive facies cycles in Western Europe. In: De Graciansky, et al. (Eds), Mesozoic-Cenozoic Sequence Stratigraphy of European Basins. Special Publication of the Society of Economists, Paleontologists and Mineralogists, 60: 445–466.Google Scholar
Lentin, J.K., Williams, G.L. & Fensome, R.A., 1998. Fossil Dinoflagellates; Index to Genera and Species, 1998 Edition. American Association of Stratigraphic Palynologists Contribution Series 25: 817 pp.Google Scholar
Loutit, T.S., Hardenbol, J., Vail, P.R. & Baum, G.R., 1988. Condensed sections: the key to age dating and correlation of continental margin sequences. In: Wilgus, C.K., Hastings, B.S., et al. (Eds), Sea Level Changes; An Integrated Approach. Special Publication of the Society of Economists, Paleontologists and Mineralogists 42: 183–216.Google Scholar
Muller, J., 1959. Palynology of recent Orinoco delta and shelf sediments, reports of the Orinoco Shelf expedition, Vol. 5. Micropalaeontology 5: 1–32.Google Scholar
Norris, M.S. & Hallam, A., 1995. Facies variations across the Middle-Upper Jurassic boundary in Western Europe and the relationship to sea-level changes. Palaeogeography, Palaeoclimatology, Palaeoecology 116: 189–245.Google Scholar
Partington, M.A.P., Mitchener, B.C., Milton, N.J. & Fraser, A.J., 1993a. Genetic sequence stratigraphy for the North Sea Late Jurassic and Early Cretaceous of the North Sea: distribution and prediction of Kimmeridgian-Late Ryazanian reservoirs in the North Sea and adjacent areas. In: Parker, J.R., (Ed.), Petroleum Geology of Northwest Europe, Proceedings of the 4th Conference: 347–370.Google Scholar
Partington, M.A.P., Copestake, P., Mitchener, B.C. & Underhill, J.R., 1993b. Biostratigraphic correlation of genetic stratigraphic sequences in the Jurassic - lowermost Cretaceous (Hettangian Ryazanian) of the North Sea and adjacent areas. In: Parker, J.R., (Ed.), Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference: 371–386.Google Scholar
Posamentier, H.W. & Vail, P.R., 1988. Eustatic controls on clastic deposition II - Sequence and systems tract models. In: Wilgus, C.K. & Hastings, B.S., (Eds). Sea Level Changes; An Integrated Approach. Special Publication of the Society of Economists, Paleontologists and Mineralogists 42: 125–154.Google Scholar
Poumot, C., 1989. Palynological evidence for eustatic events in the tropical Neogene. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine 13: 437–453.Google Scholar
Reinson, G.E., 1984. Barrier-islands and associated strand plain systems. In: Walker, R.G. (Ed.), Facies Models. Geological Association of Canada, Toronto: 119–140.Google Scholar
Riding, J.B. & Thomas, J.E., 1992. Dinoflagellate cysts of the Jurassic System. In: Powell, A.J. (Ed.), A Stratigraphic Index of Dinoflagellate Cysts: 7–98.Google Scholar
Rioult, M., Dugué, O., Jan du Chêne, R., Ponsot, C., Fily, G., Moron, J. & Vail, P.R., 1991. Outcrop Sequence stratigraphy of the Anglo-Paris basin Middle to Upper Jurassic (Normandy, Maine, Dorset). Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine 15: 101–194.Google Scholar
Ruffel, A.H. & Rawson, P.F., 1994. Palaeoclimate control on sequence stratigraphic patterns in the late Jurassic to mid-Cretaceous, with a case study from Eastern England. Palaeogeography, Palaeoclimatology, Palaeoecolog, 110: 43–54.Google Scholar
Traverse, A., 1988. Palaeopalynology, Unwin Hyman, Boston: 600 pp.Google Scholar
Vail, P.R., Audemard, F., Bowman, S.A., Eisner, P.N. & Perez-Cruz, C., 1991. The stratigraphic signatures of tectonics eustacy and sedimentology - an overview. In: Einsele, G., et al. (Eds), Cycles and events in stratigraphy: 250–275.Google Scholar
Vakhrameev, V.A., 1981. Pollen Classopolis: indicator of Jurassic and Cretaceous climates.The Palaeobotanis, 28-29: 301–307.Google Scholar
Vakhrameev, V.A., 1991. Jurassic and Cretaceous floras and climates of the Earth. Cambridge University Press, Cambridge: 318 pp.Google Scholar
Vakhrameev, V.A. & Doludenko, M.P., 1976. The Middle-Late Jurassic boundary, an important threshold in the development of climate and vegetation of the Northern Hemisphere. International Geology Review 9: 621–632.Google Scholar
Van Adrichem Boogaert, H.A. & Kouwe, W.L.F.P., 1993. Stratigraphic nomenclature of the Netherlands, revision and update by RGD and NOGEPA. Mededelingen Rijks Geologische Dienst Nieuwe Serie 50.Google Scholar
Van der Zwan, C.J., 2002. The impact of Milankovitch-scale climatic forcing on sediment supply. Sedimentary Geolog, 147: 271–294.CrossRefGoogle Scholar
Van der Zwan, C.J. & Brugman, W.A., 1999. Biosignals from the EA Field, Nigeria. In: Jones, R.W. & Simmons, M.D. (Eds). Biosignals in production and development geology. Geological Society Special Publication 152: 291–301.Google Scholar
Van Konijnenburg-Van Cittert, J.H.A., & Van der Burgh, J., 1996. Review of the Kimmeridgian flora of Sutherland, Scotland, with reference to the ecology and in situ pollen and spores. Proceedings of the Geologist’s Association 107: 97–105.Google Scholar
Wignall, P.B. & Ruffel, A.H., 1990. The influence of sudden climatic change on marine deposition in the Kimmeridgian of Northwest Europe. Journal of the Geological Society London 147:365–371.CrossRefGoogle Scholar
Ziegler, P.A., 1990. Geological atlas of Western and Central Europe (2nd edition). Shell International Exploration and Production B.V.The Hague. (The Hague): 238 pp.Google Scholar