This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1]
S. Akkoul , R. Ledee , R. Leconge , and R. Harba , A new adaptive switching median filter, IEEE Signal Process. Lett, 17 (2010), pp. 587–590.

[3]
G. Aubert and J. Aujol , A variational approach to removing multiplicative noise, SIAM J. Appl. Math., 68 (2008), pp. 925–946.

[4]
L. Bar , N. Kiryati and N. Sochen , Image deblurring in the presence of impulsive noise, International Journal of Computer Vision, 70 (2006), pp. 279–298.

[6]
D. Brownrigg , The weighted median filter, Comm. ACM, 27 (1984), pp. 807–818.

[7]
J. Cai , R. Chan , and M. Nikolova , Fast two-phase image deblurring under impulse noise, J. Math. Imaging Vision, 36 (2010), pp. 46–53.

[10]
A. Chambolle and T. Pock , A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imag. Vis., 40 (2011), pp. 120–145.

[11]
R. Chan , Y. Dong and M. Hintermüller , An efficient two-phase L1- TV method for restoring blurred images with impulse noise, IEEE Trans. Image Process., 19 (2010), pp. 1731–1739.

[12]
R. Chan , C. Ho and M. Nikolova . Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization, IEEE Trans. Image Process., 14 (2005), pp. 1479–1485.

[13]
T. Chan and S. Esedoglu , Aspects of total variation regularized L1 function approximation, SIAM J. Appl. Math., 65 (2005), pp. 1817–1837.

[14]
T. Chan and J. Shen , Image processing and analysis: variational, PDE, wavelet, and stochastic methods, SIAM, 2005.

[15]
T. Chen and H. Wu , Space variant median filters for the restoration of impulse noise corrupted images, IEEE Trans. Circuits Syst. II, 48 (2001), pp. 784–789.

[16]
T. Chen and H. Wu , Adaptive impulse detection using center-weighted median filters, IEEE Signal Process. Lett., 8 (2001), pp. 1–3.

[17]
Y. Dong , M. Hintermüller and M. Neri
An efficient primal dual method for L1- TV image restoration, SIAM J. Imag. Sci., 2 (2009), pp. 1168–1189.

[18]
Y. Dong , R. Chan , and S. Xu , A detection statistic for random-valued impulse noise, IEEE Trans. Image Process., 16 (2007), pp. 1112–1120.

[19]
Y. Dong and T. Zeng , A convex variational model for restoring blurred images with multiplicative noise, SIAM J. Imaging Sci., 6 (2013), pp. 1598–1625.

[20]
M. Elad and M. Aharon , Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. Image Process., 15 (2006), pp. 3736–3745.

[21]
B. Figueiredo and J. Bioucas-Dias , Restoration of Poissonian images using alternating direction optimization, IEEE Trans. Image Process., 19 (2010), pp. 3133–3145.

[22]
M. Hintermüller , K. Ito and K. Kunisch , The primal-dual active set strategy as a semismooth Newton method, SIAM J. Opt., 13 (2002), pp. 865–888.

[23]
Y. Huang , D. Lu and T. Zeng , A Two-Step Approach for the Restoration of Images Corrupted by Multiplicative, SIAM J. Sci. Comput., 35 (2013), pp. A2856–A2873.

[24]
H. Hwang and R. Haddad
Adaptive median filters: new algorithms and results, IEEE Trans. Image Process., 4 (1995), pp. 499–502.

[25]
S. Ko and Y. Lee , Center weighted median filters and their applications to image enhancement, IEEE Trans. Circuits Syst., 38 (1991), pp. 984–993.

[26]
T. Le , T. Chartrand , and T. Asaki , A variational approach to reconstructing images corrupted by Poisson noise, J. Math. Imaging Vis., 27 (2007), pp. 257–263.

[27]
Y. Li , L. Shen , D. Dai and B. Suter , Framelet algorithms for de-blurring images corrupted by impulse plus Gaussian noise, IEEE Trans. Image Process., 20 (2011), pp. 1822–1837.

[28]
L. Ma , J. Yu , and T. Zeng , Sparse Representation Prior and Total Variation–Based Image Deblurring Under Impulse Noise, SIAM J. Imag Sci, 6 (2013), pp. 2258–2284.

[29]
L. Ma , M. Ng , J. Yu , and T. Zeng , Efficient box-constrained TV-type-l1 Algorithms for Restoring Images with Impulse Noise, J. Comp. Math., 31 (2013), pp. 249–270.

[30]
M. Nikolova , Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the processing of outliers, SIAM J. Numer. Anal., 40 (2002), pp. 965–994.

[31]
M. Nikolova , A variational approach to remove outliers and impulse noise, J. Math. Imag. Vis., 20 (2004), pp. 99–120, .

[32]
J. Nocedal and S. Wright , Numerical Optimization, New York: Springer, Second edition, 2006.

[33]
L. Qi and J. Sun , A nonsmooth version of Newton's method, Math. Programm., 58 (1993), pp 353–367.

[35]
L. Rudin , P. Lions , and S. Osher , Multiplicative denoising and deblurring: theory and algorithms, Geometric Level Sets in Imaging, Vision and Graphics, S. Osher and N. Paragios , Eds. New York: Springer, pp. 103–119, 2003.

[36]
L. Rudin , S. Osher , and E. Fatemi , Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), pp. 259–268.

[37]
S. Setzer and G. Steidl and T. Teuber , Deblurring Poissonian images by split Bregman techniques, J. Visual Commun. and Image Represent., 21 (2010), pp. 193–199.

[38]
Y. Xiao , T. Zeng , J. Yu and M. Ng , Restoration of Images Corrupted by Mixed Gaussian-Impulse Noise via l1-l0 Minimization, Pattern Recogn., 44 (2011), pp. 1708–1728.

[39]
J. Yang , Y. Zhang and W. Yin , An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise, SIAM J. Sci. Comput., 31 (2009), pp. 2842–2865.

[40]
W. Yin , D. Goldfarb and S. Osher , The total variation regularized L1 model for multiscale decomposition, Multiscale Model. Simul., 6 (2007), pp. 190–211.