[1]
Witkin A., Scale-space filtering, Int. Joint Conf. Artif. , Karlsruhe, germany, (1983), pp. 1019–1022.

[2]
Young I. T. and Van Vliet L.J., Recursive implementation of the Gaussian filter, Signal Process., 44 (1995), pp. 139–151.

[3]
Haglund L., Adaptive multidimensional filtering, LinkÃűuping University, Sweden, 1992.

[4]
Lorenc A. C., Iterative analysis using covariance functions and filters, Q. J. Roy. Meteor. Soc., 118(118) (1992), pp. 569–591.

[5]
Purser R. J., Wu W. S., Parish D. F. and Roberts N. M., Numerical aspects of the application of recursive filters to variational statistical analysis. part II: spatially inhomogeneous and anisotropic general covariances, Mon. Weather Rev., 131(8) (2003), pp. 1536–1548.

[6]
Weaver A. T. and Courtier P., Correlation modelling on the sphere using a generalized diffusion equation, Q. J. Roy. Meteor. Soc., 127 (2001), pp. 1815–1846.

[7]
Deriche R., Separable recursive filtering for efficient multi-scale edge detection, In Proc. Int. Workshop Industrial Application, (1987), pp. 18–23.

[8]
Vliet L. V., Young I. and Verbeek P., Recursive Gaussian derivative filters, Int. C. Patt. Recog., (1998), pp. 509–514.

[9]
Cuomo S., De Pietro G., Farina R., Galletti A. and Sannino G., A novel numerical scheme for ECG signal denoising, Procedia Computer Science, 51 (2015), pp. 775–784.
[10]
Cuomo S., De Pietro G., Farina R., Galletti A. and Sannino G., A framework for ECG denoising for mobile devices, The, ACM International Conference ACM, (2015), pp. 1–4.

[11]
Cuomo S., De Pietro G., Farina R., Galletti A. and Sannino G., A revised scheme for real time ECG Signal denoising based on recursive filtering, Biomed. Signal Proces., (2016), pp. 134–144.

[12]
Dobricic S. and Pinardi N., An oceanographic three-dimensional variational data assimilation scheme, Ocean Model., 22 (2008), pp. 89–105.

[13]
Farina R., Dobricic S., Storto A., Masina S. and Cuomo S., A revised scheme to compute horizontal covariances in an oceanographic 3D-VAR assimilation system, J. Comput. Phys., 284 (2015), pp. 631–647.

[14]
Cuomo S., Farina R., Galletti A. and Marcellino L., An error estimate of Gaussian Recursive Filter in 3Dvar problem, Comput. Sci. Inf. Syst. IEEE, 2 (2014), pp. 587–595.

[15]
D’ Amore L., Arcucci R., Marcellino L. and Murli A., HPC computation issues of the incremental 3D variational data assimilation scheme in OceanVarsoftware, J. Numer. Anal., Industrial and Applied Mathematics, 7(3-4) (2013), pp. 91–105.

[16]
Lorenc A.C., Development of an operational variational assimilation scheme, J. Meteorol. Soc. Jpn., 75 (1997), pp. 339–346.

[17]
Haben S., Lawless A. and Nicholos N., Conditioning and preconditioning of the variational data assimilation problem, Computers and Fluids, 46 (2011), pp. 252–256.

[18]
Haben S., Lawless A. and Nichols N., Conditioning of the 3Dvar data assimilation problem, University of Reading, Dept. of Mathematics, Math Report Series, 3 (2009).

[19]
Cuomo S., Galletti A., Giunta G., Marcellino L., *Some error bounds for K-iterated Gaussian recursive filters*, AIP Conference Proceedings, 1776 (2016), 040008, http://dx.doi.org/10.1063/1.4965320.
[20]
Cuomo S., Farina R., Galletti A. and Marcellino L., A K-iterated scheme for the first-order Gaussian Recursive Filter with boundary conditions, Federated Conference on Computer Science and Information Systems, 5 (2015), pp. 641–647.

[21]
Galletti A. and Giunta G., Error analysis for the first-order Gaussian recursive filter operator, Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, Ganzha M., Maciaszek L., Paprzycki M. (eds). ACSIS, 8 (2016), pp. 673–678, http://dx.doi.org/10.15439/2016F455.
[22]
Hayden C. and Purser R. J., Recursive filter objective analysis of meteorological field: applications to NESDIS operational processing, J. Appl. Meteorol., 34 (1995), pp. 3–15.

[23]
Higham N. J., Efficient Algorithms for Computing the Condition Number of a Tridiagonal Matrix, SIAM J. Sci. Stat. Comput., 7(1) (1986), pp. 150–165.

[24]
Cuomo S., Galletti A., Giunta G. and Starace A., Surface Reconstruction from Scattered Point via RBF Interpolation on GPU, Comput. Sci. Inf. Syst. IEEE, (2013), pp. 433–440.

[25]
Cuomo S., Galletti A., Giunta G. and Marcellino L., Reconstruction of implicit curves and surfaces via RBF interpolation, Appl. Numer. Math., (2016), pp. 60–63.

[26]
Higham N. J., Accuracy and Stability of Numerical Algorithms, Jounal of the American Statistical Association, 16(94) (2002), pp. 285–289.

[27]
Triggs B. and Sdika M., Boundary conditions for Young-van Vliet recursive filtering, IEEE T. Signal Proces., 54(6) (2006), pp. 2365–2367.

[28]
Farina R., Dobricic S. and Cuomo S., Some numerical enhancements in a data assimilation scheme, AIP Conf. Proc., 1558 (2013), pp.2369–2372.