Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-mm7gn Total loading time: 0.65 Render date: 2022-08-14T16:06:59.745Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Antibiotic use in animal feed and its impact on human healt

Published online by Cambridge University Press:  14 December 2007

Mary D. Barton*
Affiliation:
School of Pharmacy and Medical Sciences, University of South Australia, GPO Box 2471, Adelaide, South Australia 5001, Australia.
*
Dr Mary D. Barton, fax +61 (0)8 8302 2389, email Mary.Barton@unisa.edu.au
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Antibiotic resistance in bacteria that cause disease in man is an issue of major concern. Although misuse of antibiotics in human medicine is the principal cause of the problem, antibiotic-resistant bacteria originating in animals are contributory factors, with some types of resistance in some species of bacteria. Antibiotics are added to animal feeds to treat and prevent infections and to improve growth and production. Until recently, the major concerns about incorporation of antibiotics in animal feeds related to antibiotic residues in products from treated animals. Although, in 1969, the Swann (1969) report drew attention to the potential for antibiotic-resistant bacteria to spread from treated animals via the food chain, there was little response until the detection of vancomycin-resistant enterococci in animals fed a related glycopeptide, avoparcin. Subsequently, attention started to focus on the issue and other examples of transfer of resistant bacteria through the food chain, such as enterococci resistant to quinupristin–dalfopristin or to everninomicin, fluoroquinolone-resistant campylobacters and multiresistant Escherichia coli, and salmonella such as Salmonella typhimurium DT104. Reviews and committees in many countries have highlighted the need for better control of licensing of antibiotics, and codes for prudent use of antibiotics by veterinary practitioners and farmers. The continued use of antibiotic growth promoters has been questioned and there is a need to ensure that antibiotics important in human medicine are not used therapeutically or prophylactically in animals.

Type
Research Article
Copyright
Copyright © CABI Publishing 2000

References

Aalback, B, Rasmussen, J, Nielsen, B & Olsen, JE (1991) Prevalence of antibiotic-resistant Escherichia coli in Danish pigs and cattle. APMIS 99, 11031110.CrossRefGoogle Scholar
Aarestrup, FM (1998) Association between decreased susceptibility to a new antibiotic for treatment of human diseases, everninomicin (SCH 27899) and resistance to an antibiotic used for growth promotion in animals, avilamycin. Microbial Drug Resistance 4, 137141.CrossRefGoogle Scholar
Aarestrup, FM, Ahrens, P, Madsen, M, Pallesen, LV, Poulsen, L & Westh, H (1996) Glycopeptide susceptibility among Danish Enterococcus faecium and Enterococcus faecalis isolates of animal and human origin and PCR identification of genes within the VanA cluster. Antimicrobial Agents and Chemotherapy 40, 19381940.Google ScholarPubMed
Aarestrup, FM, Bager, F, Jensen, JE, Madsen, M, Meyling, A & Wegener, HC (1998 a) Surveillance of antimicrobial resistance in bacteria isolated from food animals to antimicrobial growth promoters and related therapeutic agents in Denmark. APMIS 106, 606622.CrossRefGoogle ScholarPubMed
Aarestrup, FM, Bager, F, Jensen, JE, Madsen, M, Meyling, A & Wegener, HC (1998 b) Resistance to antimicrobial agents used for animal therapy in|pathogenic, zoonotic|and indicator bacteria isolated from different food animals in Denmark: a baseline study for the Danish Integrated Antimicrobial Resistance Monitoring Programme (DANMAP). APMIS 106, 745770.CrossRefGoogle Scholar
Aarestrup, FM & Cartensen, B (1998) Effect of tylosin used as a growth promoter on the occurrence of macrolide-resistant enterococci and staphylococci in pigs. Microbial Drug Resistance 4, 307312.CrossRefGoogle ScholarPubMed
Aarestrup, FM, Nielsen, EM, Madsen, M & Engberg, J (1997) Antimicrobial susceptibility patterns of thermophilic Campylobacter spp. from humans, pigs, cattle and broilers in Denmark. Antimicrobial Agents and Chemotherapy 41, 22442250.Google ScholarPubMed
Abou-Youssef, MH, Di Cuollo, CJ, Free, SM & Scott, GC (1983) The influence of a feed additive level of virginiamycin on the course of an experimentally induced Salmonella typhimurium infection in broilers. Poultry Science 62, 3037.CrossRefGoogle ScholarPubMed
Adesiyun, AA & Kaminjolo, JS (1992) Susceptibility to antibiotic of Escherichia coli strains isolated from diarrhoeic and non-diarrhoeic livestock on Trinidad. Revue d'Elevage et de Médecine Vétérinaire des Pays Tropicaux 45, 260262.Google ScholarPubMed
Anderson, ES (1968) Drug resistance in Salmonella typhimurium and its implications. British Medical Journal 3, 333339.CrossRefGoogle ScholarPubMed
Anonymous, (1997) Reduced susceptibility of Staphylococcus aureus to vancomycin–Japan, 1996. Morbidity and Mortality Weekly Report 46, 624626.Google Scholar
Bager, F, Aarestrup, FM, Madsen, M & Wegener, HC (1999) Glycopeptide resistance in Enterococcus faecium from broilers and pigs following discontinued use of avoparcin. Microbial Drug Resistance 5, 5356.CrossRefGoogle ScholarPubMed
Bager, F, Madsen, M, Christensen, J & Aarestrup, FM (1997) Avoparcin used as a growth promoter is associated with the occurrence of vancomycin-resistant Enterococcus faecium on Danish poultry and pig farms. Preventive Veterinary Medicine 31, 95112.CrossRefGoogle ScholarPubMed
Baggesen, DL & Aarestrup, FM (1998) Characterisation of recently emerged multiple antibiotic-resistant Salmonella enterica serovar typhimurium DT104 and other multiresistant phage types from Danish pig herds. Veterinary Record 143, 9597.CrossRefGoogle ScholarPubMed
Barrow, PA (1989) Further observations on the effect of feeding diets containing avoparcin on the excretion of salmonellas by experimentally infected chickens. Epidemiology and Infection 102, 239252.CrossRefGoogle ScholarPubMed
Barton, MD (1998) Does the use of antibiotics in animals affect human health?. Australian Veterinary Journal 76, 177179.CrossRefGoogle ScholarPubMed
Blanco, JE, Blanco, M, Mora, A & Blanco, J (1997) Prevalence of bacterial resistance to quinolones and other antimicrobials among avian Escherichia coli strain isolates from septicaemic and healthy chickens in Spain. Journal of Clinical Microbiology 35, 21842185.Google Scholar
Boon, PI & Cattanach, M (1999) Antibiotic resistance of native and faecal bacteria isolated from rivers, reservoirs and sewage treatment facilities in Victoria, south-eastern Australia. Letters in Applied Microbiology 28, 164168.CrossRefGoogle Scholar
Bryson, HM & Spencer, CM (1996) Quinupristin/dalfopristin. Drugs 52, 406415.CrossRefGoogle Scholar
Collignon, PJ (1997) Antibiotic resistance: is it leading to the re-emergence of many infections from the past? In Recent Advances in Microbiology vol. 5, pp. 203256 [Asche, V, editor]. Melbourne, Victoria: The Australian Society for Microbiology Inc.Google Scholar
Commission on Antimicrobial Feed|Additives (1997) Antimicrobial Feed Additives. Stockholm: Ministry of Agriculture.Google Scholar
Congress of the United|States (1995) Impacts of Antibiotic Resistant Bacteria. Washington, DC: Government Printing Office.Google Scholar
Coque, TM, Tomayko, JF, Ricke, SC, Okhyusen, PC & Murray, BE (1996) Vancomycin-resistant enterococci from nosocomial community and animal sources in the United States. Antimicrobial Agents and Chemotherapy 40, 26052609.Google ScholarPubMed
Corpet, DE (1993) An evaluation of methods to assess the effect of antimicrobial residues on the human gut flora. Veterinary Microbiology 35, 199212.CrossRefGoogle ScholarPubMed
Corpet, DE (1996) Microbiological hazards for humans of antimicrobial growth promoter use in animal production. Revue de Médecine Vétérinaire 147, 851862.Google Scholar
Danish Veterinary Laboratory (1995) The Effect of Avoparcin Used as a Feed Additive on the Occurrence of Vancomycin Resistant Enterococcus faecium in Pig and Poultry Production. Copenhagen, Denmark: Danish Veterinary Laboratory.Google Scholar
Danish Veterinary Laboratory (1998) The Effect of Virginiamycin on Bacterial Antimicrobial Resistance Development. Copenhagen, Denmark: Danish Veterinary Laboratory.Google Scholar
Davies, R & Roberts, TA (1999) Antimicrobial susceptibility of enterococci recovered from commercial swine carcasses: effect of feed additives. Letters in Applied Microbiology 29, 327333.CrossRefGoogle ScholarPubMed
Davis, MA, Hancock, DD, Besser, TE, Rice, DH, Gay, JM, Gay, C, Gearhart, L & DiGiacomo, R (1999) Changes in antimicrobial resistance among Salmonella enterica Serovar typhimurium isolates from humans and cattle in the Northwestern United States, 1982–1997. Emerging Infectious Diseases 5, 802806.CrossRefGoogle ScholarPubMed
Dayan, AD (1993) Allergy to antimicrobial residues in food: assessment of the risk to man. Veterinary Microbiology 35, 213226.CrossRefGoogle Scholar
Descheemaeker, PR, Chapelle, S, Devriese, LA, Butaye, P, Vandamme, P & Goossens, H (1999) Comparison of glycopeptide-resistant Enterococcus faecium isolates and glycopeptide resistance genes of human and animal origin. Antimicrobial Agents and Chemotherapy 43, 20322037.Google Scholar
Dewdney, JM, Maes, L, Raynaud, JP, Blanc, F, Scheid, JP, Jackson, T, Lens, S & Verschueren, C (1991) Risk assessment of antibiotic residues of beta-lactams and macrolides in food products with regard to their immuno-allergic potential. Food Chemistry and Toxicology 29, 477483.CrossRefGoogle ScholarPubMed
Duffy, G, Cloak, OM, O'Sullivan, MG, Guillet, A, Sheridan, JJ, Blair, IS & McDowell, DA (1999) The incidences and antibiotic resistance profiles of Salmonella spp. on Irish retail meat products. Food Microbiology 16, 623631.CrossRefGoogle Scholar
Dunlop, H, McEwan, S, Meek, AH, Black, WD, Friendship, RM & Clarke, RC (1998 a) Prevalences of resistance to seven antimicrobials among faecal flora of swine on 34 farrow-finish farms in Ontario. Preventive Veterinary Medicine 34, 265282.CrossRefGoogle Scholar
Dunlop, H, McEwan, SA, Meek, AH, Clarke, RC, Black, WD & Friendship, RM (1998 b) Associations among antimicrobial drug treatments and antimicrobial resistance of fecal Escherichia coli of swine on 34 farrow-to-finish farms in Ontario, Canada. Preventive Veterinary Medicine 34, 283305.CrossRefGoogle ScholarPubMed
Dutta, GN & Devriese, L (1982) Resistance to macrolide–lincosamide–streptogramin antibiotics in enterococci from the intestines of animals. Research in Veterinary Science 33, 7072.Google ScholarPubMed
Elharrif, Z & Megraud, F (1984) Sensitivity of Campylobacter jejuni/coli to 11 antibiotics. Pathologie Biologie 32, 536539.Google ScholarPubMed
El-Sam, S, Linton, AH, Bennett, PM & Hinton, M (1993) Effects of low concentrations of ampicillin on the intestinal Escherichia coli of chickens. Journal of Applied Bacteriology 75, 108112.CrossRefGoogle Scholar
Elwinger, K, Engström, B, Berndtson, E, Fossum, O & Waldenstedt, L (1995) Effect of Maxus (avilamycin), Avotan (avoparcin), Monteban (narasin) and Elanco-ban (monensin-Na) on the Caecal Growth of Clostridium perfringens in Broilers. Report. Uppsala: Swedish University of Agricultural Sciences.Google Scholar
European Federation of Animal Health (1998) The microbial threat. Animal Pharm issue no. 405, 14.Google Scholar
Fedorka-Cray, PJ, Miller, M, Tollefson, L, Dargatz, DA & Wineland, NE (1998) National Antimicrobial Susceptibility Monitoring Program–Veterinary Isolates, April 1998. Athens, GA: USDA-ARS-RRC.Google Scholar
Feinman, SE (1998) Antibiotics in animal feed–drug resistance revisited. American Society for Microbiology News 64, 2430.Google Scholar
Fey, PD, Safranek, TJ, Rupp, ME, Dunne, EF, Ribot, E, Iwen, PC, Bradfors, PA, Angulo, FJ & Hinrichs, SH (2000) Ceftriaxone-resistant salmonella infection acquired by a child from cattle. New England Journal of Medicine 342, 12421249.CrossRefGoogle ScholarPubMed
Fone, DL & Barker, RM (1994) Associations between human and farm animal infections with Salmonella typhimurium DT104 in Herefordshire. CDR Review 4, R136–R140. Available at http://www.phls.co.uk/publications/cdr.htm.Google ScholarPubMed
Ford, AM, Fagerberg, DJ, Quarles, CL, George, BA & McKinley, GA (1981) Influence of salinomycin on incidence, hedding and antimicrobial resistance of Salmonella typhimurium in experimentally infected broiler chicks. Poultry Science 60, 24412453.CrossRefGoogle Scholar
Franklin, A (1984) Antimicrobial drug resistance in porcine enterotoxigenic Escherichia coli of O-group 149 and non-enterotoxigenic Escherichia coli. Veterinary Microbiology 9, 467475.CrossRefGoogle Scholar
General Accounting Office (1999) Food Safety: The Agricultural Use of Antibiotics and Its Implications for Human Health. Report. Washington DC: General Accounting Office.Google Scholar
Glynn, KM, Bopp, C, Dewitt, W, Dabney, P, Mokhtar, M & Angulo, F (1998) Emergence of multidrug-resistant Salmonella enterica serotype Typhimurium DT104 infections in the United States. New England Journal of Medicine 338, 13331338.CrossRefGoogle ScholarPubMed
Gold, HS & Moellering, RC (1996) Antimicrobial-drug resistance. New England Journal of Medicine 335, 14451453.CrossRefGoogle ScholarPubMed
Gorbach, SL (1993) Perturbation of intestinal microflora. Veterinary and Human Toxicology 35, Suppl. 1523.Google ScholarPubMed
Griggs, DJ, Hall, MC, Jin, YF & Piddock, LJV (1994) Quinolone resistance in veterinary isolates of salmonella. Journal of Antimicrobial Chemotherapy 33, 11731189.CrossRefGoogle ScholarPubMed
Gropp, JM & Shuhmacher, A (1997) Antimicrobial growth promoters in animal husbandry. In The Medical Impact of the Use of Antimicrobials in Food Animals, section 2.1.1b. Geneva: WHO.Google Scholar
Guillemot, D (1999) Antibiotic use in humans and bacterial resistance. Current Opinion in Microbiology 2, 494498.CrossRefGoogle ScholarPubMed
Gustafson, RH & Bowen, RE (1997) Antibiotic use in animal agriculture. Journal of Applied Bacteriology 83, 531541.CrossRefGoogle ScholarPubMed
Gutzman, F, Layton, H, Simkins, K & Jarolmen, H (1976) Influence of antibiotic-supplemented feed on occurrence and persistence of Salmonella typhimurium in experimentally infected swine. American Journal of Veterinary Research 37, 649655.Google Scholar
Hamdy, AH, Thomas, RW, Yancey, RJ & Davis, RB (1983) Therapeutic effect of optimal lincomycin concentration in drinking water on necrotic enteritis in broilers. Poultry Science 62, 589591.CrossRefGoogle ScholarPubMed
Hammerum, A, Jensen, LB & Aarestrup, FM (1998) Detection of the satA gene and transferability of virginiamycin resistance in Enterococcus faecium from farm animals. FEMS Microbiology Letters 168, 145151.CrossRefGoogle Scholar
Hariharan, H, Wright, T & Long, J (1990) Isolation and antimicrobial susceptibility of Campylobacter coli and Campylobacter jejuni from slaughter hogs. Microbiologica 13, 16.Google ScholarPubMed
Health Council of The Netherlands (1998) Antimicrobial Growth Promoters. Committee on Antimicrobial Growth Promoters, Report. The Hague, The Netherlands: Health Council of The Netherlands.Google Scholar
Heidelberg Appeal Nederland Foundation (1998) Emergence of a Debate: AGPs and Public Health. Report. [Bezoen, A, van Haren, W & Hanekamp, JC, editors]. Amsterdam, The Netherlands: Heidelberg Appeal Nederland Foundation.Google Scholar
Herikstad, H, Hayes, P, Mokhtar, M, Fracaro, ML, Threlfall, EJ & Angulo, FJ (1997) Emerging quinolone-resistant Salmonella in the United States. Emerging Infectious Diseases 3, 371372.CrossRefGoogle ScholarPubMed
Heurtin-Le Corre, C, Donnio, PY, Perrin, M, Travert, MF & Avril, JL (1999) Increasing incidence and comparison of nalidixic acid-resistant Salmonella enterica subsp enterica serotype typhimurium isolates from humans and animals. Journal of Clinical Microbiology 37, 266269.Google ScholarPubMed
Hinton, M, Hampson, DJ & Linton, AH (1985) The effects of oxytetracycline on the intestinal Escherichia coli flora of newly weaned pigs. Journal of Hygiene (London) 95, 7785.CrossRefGoogle ScholarPubMed
Hinton, M, Rixson, PD, Allen, V & Linton, AH (1984) The persistence of drug resistant Escherichia coli strains in the majority faecal flora of calves. Journal of Hygiene (Cambridge) 93, 547557.CrossRefGoogle ScholarPubMed
House of Lords (1998) Resistance to Antibiotics and Other Antimicrobial Agents. Select Committee on Science and Technology, Seventh Report (Session 1997-98). London: The Stationery Office, Available at http://www. parliament.the-stationery-office.co.uk/pa/1d199798/1dselect/ldscte.../st0701htGoogle Scholar
Hummel, R, Tschape, H & Witte, W (1986) Spread of plasmid-mediated nourseothricin resistance due to antibiotic use in animal husbandry. Journal of Basic Microbiology 26, 461466.CrossRefGoogle ScholarPubMed
Hunter, JE, Bennett, M, Hart, CA, Shelley, JC & Walton, JR (1994) Apramycin-resistant Escherichia coli isolated from pigs and a stockman. Epidemiology and Infection 112, 473480.CrossRefGoogle Scholar
Hunter, JE, Hart, CA, Shelley, JC, Walton, JR & Bennett, M (1993) Human isolates of apramycin-resistant Escherichia coli which contain the genes for the AAC(3)IV enzyme. Epidemiology and Infection 110, 253259.CrossRefGoogle ScholarPubMed
Jacobs-Reitsma, WF, Kan, CA & Bolder, NM (1994) The induction of quinolone resistant Campylobacter bacteria in broilers by quinolone treatment. Letters in Applied Microbiology 19, 228231.CrossRefGoogle Scholar
Jansson, L, Elwinger, K, Engström, B, Fossum, O & Teglöf, B (1992) Clinical Test of the Efficacy of Virginiamycin and Dietary Enzyme Supplementation Against Necrotic Enteritis (NE) Infection in Broilers. Publication 638. Uppsala, Sweden: Swedish University of Agricultural Sciences.Google Scholar
Jensen, LB, Ahrens, P, Dons, L, Jones, RN, Hammerum, AM & Aarestrup, FM (1998) Molecular analysis of Tn1546 in Enterococcus faecium isolated from animals and humans. Journal of Clinical Microbiology 36, 437442.Google ScholarPubMed
Jin, S (1997) Regulation, realities and recommendation on antimicrobial use in food animal production in China. In The Medical Impact of the Use of Antimicrobials in Food Animals, section 2.3.4. Geneva: WHO.Google Scholar
Joint Expert Technical Advisory Committee on Antibiotic Resistance (1999) The Use of Antibiotics in Food-producing Animals: Antibiotic-resistant Bacteria in Animals and Humans. Canberra: Commonwealth of Australia.Google Scholar
Kaukas, A, Hinton, M & Linton, AH (1988) The effect of growth-promoting antibiotics on the faecal enterococci of healthy young chickens. Journal of Applied Bacteriology 64, 5764.CrossRefGoogle ScholarPubMed
Kelley, TR, Pancorbo, OC, Merka, WC & Barnhart, HM (1998) Antibiotic resistance of litter isolates. Poultry Science 77, 243247.CrossRefGoogle ScholarPubMed
Kidd, RM (1994) The Potential Risk of Effects of Antimicrobial Residues on Human Gastro-intestinal Flora. Report. Brussels, Belgium: Fédération Européenne de la Santé Animale.Google Scholar
Kirst, HA, Thompson, DG & Nicas, TI (1998) Historical usage of vancomycin. Antimicrobial Agents and Chemotherapy 42, 13031304.Google ScholarPubMed
Klare, I, Heier, H, Claus, H, Reissbrodt, R & Witte, W (1995) vanA-mediated high-level glycopeptide resistance in Enterococcus faecium from animal husbandry. FEMS Microbiology Letters 125, 165171.CrossRefGoogle ScholarPubMed
Klein, G, Pack, A & Reuter, G (1998) Antibiotic resistance patterns of enterococci and occurrence of vancomycin-resistant enterococci in raw minced beef and pork in Germany. Applied and Environmental Microbiology 64, 18251830.Google ScholarPubMed
Kruse, H, Johansen, BK, Rorovik, LM & Schiller, G (1999) The use of avoparcin as a growth promoter and the occurrence of vancomycin-resistant Enterococcus species in Norwegian poultry and swine production. Microbial Drug Resistance 5, 135139.CrossRefGoogle ScholarPubMed
Lambie, N, Ngeleka, M, Brown, G & Ryan, J (2000) Retrospective study on Escherichia coli infections in broilers subjected to postmortem examination and antibiotic resistance of isolates in Trinidad. Avian Diseases 44, 155160.CrossRefGoogle ScholarPubMed
Langlois, BE, Cromwell, GL, Stahly, TS, Dawson, KA & Hays, VW (1983) Antibiotic resistance of coliforms after long-term withdrawal of therapeutic and subtherapeutic antibiotic use in a swine herd. Applied and Environmental Microbiology 45, 14331434.Google Scholar
Langlois, BE, Dawson, KA, Leak, I & Aaron, DK (1988) Effect of age and housing location on antibiotic resistance of fecal coliforms from pigs in a non-antibiotic exposed herd. Applied and Environmental Microbiology 54, 13411344.Google Scholar
Lawrence, K (1997) Growth promoters. In The Medical Impact of the Use of Antimicrobials in Food Animals. EDG general comments. Geneva: WHO.Google Scholar
Lee, C, Langlois, BE & Dawson, KA (1993) Detection of tetracyline resistance determinants in pig isolates from three herd with different histories of antimicrobial agent exposure. Applied and Environmental Microbiology 59, 14671472.Google Scholar
Lessing, MPA & Raftery, MJ (1998) Vancomycin-resistant Staphylococcus aureus. Lancet 351, 601602.CrossRefGoogle ScholarPubMed
Levy, SB, FitzGerald, GB & Macone, AB (1976) Changes in the intestinal flora of farm personnel after introduction of a tetracycline-supplemented feed on a farm. New England Journal of Medicine 295, 583588.CrossRefGoogle ScholarPubMed
Linton, AH (1986) Flow of resistance genes in the environment and from animals to man. Journal of Antimicrobial Chemotherapy 18, Suppl. C,189197.CrossRefGoogle Scholar
Linton, AH, Hedges, AJ & Bennett, PM (1988) Monitoring for the development of antimicrobial resistance during the use of olaquindox as feed additive on commercial pig farms. Journal of Applied Bacteriology 64, 311327.CrossRefGoogle ScholarPubMed
Lucey, B, Crowley, D, Moloney, P, Cryan, B, Daly, M, O'Halloran, F, Threlfall, EJ & Fanning, S (2000) Integron-like structures in Campylobacter spp. of human and animal origin. Emerging Infectious Diseases 6, 5055.Google Scholar
McOrist, S (1997) Use of antimicrobials in food production—scope, policies and practices. In The Medical Impact of the Use of Antimicrobials in Food Animals, section 2.1.1. Geneva: WHO.Google Scholar
McOrist, S, Morgan, J, Veenhuizen, MF, Lawrence, K & Kroger, HW (1997) Oral administration of tylosin phosphate for treatment and prevention of proliferative enteropathy in pigs. American Journal of Veterinary Research 58, 136139.Google ScholarPubMed
McOrist, S, Smith, SH, Shearn, MF, Carr, MM & Miller, DJ (1996) Treatment and prevention of porcine proliferative enteropathy with oral tiamulin. Veterinary Record 139, 615618.Google ScholarPubMed
Manie, T, Khan, S, Brozel, VS, Veith, WJ & Gouws, PA (1998) Antimicrobial resistance of bacteria isolated from slaughtered and retail chickens in South Africa. Letters in Applied Microbiology 26, 253258.CrossRefGoogle ScholarPubMed
Marshall, B, Petrowski, D & Levy, S (1990) Inter- and intra-species spread of Escherichia coli in a farm environment in the absence of antibiotic usage. Proceedings of the National Academy of Sciences USA 87, 66096613.CrossRefGoogle Scholar
Marshall, DL, Kim, JJ & Donnelly, SP (1996) Antimicrobial susceptibility and plasmid-mediated streptomycin resistance of Plesiomonas shigelloides isolated from blue crab. Journal of Applied Bacteriology 81, 195200.CrossRefGoogle ScholarPubMed
Martel, J & Coudert, M (1993) Bacterial resistance monitoring in animals: the French national experiences of surveillance schemes. Veterinary Microbiology 35, 321338.CrossRefGoogle ScholarPubMed
Matthew, AG, Upchurch, W & Chattin, SE (1998) Incidence of antibiotic resistance of fecal Escherichia coli isolated from commercial swine farms. Journal of Animal Science 76, 429434.CrossRefGoogle Scholar
Ministry of Agriculture, Fisheries and Food (1998) A Review of Antimicrobial Resistance in the Food Chain. Report. London: MAFF.Google Scholar
Molnar, L (1996) Sensitivity of strains of Serpulina hyodysenteriae isolated in Hungary to chemotherapeutic drugs. Veterinary Record 138, 158160.CrossRefGoogle ScholarPubMed
Moore, J, Madden, H, Kerr, JR, Wilson, TS & Murphy, PG (1996) Erythromycin resistant thermophilic Campylobacter species isolated from pigs. Veterinary Record 138, 306307.CrossRefGoogle ScholarPubMed
Morinigo, MA, Cornax, R, Castro, D, Jiminez-Notaro, M, Romero, P & Borrego, JJ (1990) Antibiotic resistance of salmonella strains isolated from natural polluted waters. Journal of Applied Bacteriology 68, 297302.CrossRefGoogle ScholarPubMed
National Research Council, Institute of Medicine (1998) The Use of Drugs in Food Animals: Benefits and Risks. Committee on Drug Use in Food Animals, Report. Washington DC: National Academy Press.Google Scholar
Nijsten, R, London, N, van den Bogaard, A & Stobberingh, E (1993) Antibiotic resistance of Enterobacteriaceae isolated from the faecal flora of fattening pigs. Veterinary Quarterly 15, 152157.CrossRefGoogle ScholarPubMed
Nijsten, R, London, N, van den Bogaard, A & Stobberingh, E (1994) Resistance in faecal Escherichia coli isolated from pig farmers and abattoir workers. Epidemiology and Infection 113, 4552.CrossRefGoogle Scholar
Nijsten, R, London, N, van den Bogaard, A & Stobberingh, E (1996) Antibiotic resistance among Escherichia coli isolated from faecal samples of pig farmers and pigs. Journal of Antimicrobial Chemotherapy 37, 11311140.CrossRefGoogle ScholarPubMed
Office International des Epizooties (1999) The Use of Antibiotics in Animals – Ensuring the Protection of Public Health. Proceedings of the European Scientific Conference, 24–26 March 1999. Paris, France: OIE.Google Scholar
Orden, JA, Ruiz-Santa-Quiteria, JA, Garcia, S, Cid, D and de la Fuente|R (1999) In-vitro activities of cephalosporins and quinolones against Escherichia coli strains isolated from diarrheic dairy calves. Antimicrobial Agents and Chemotherapy 43, 510513.Google ScholarPubMed
Ormerod, AD, Reid, TM & Main, RA (1987) Penicillin in milk – its importance in urticaria. Clinical Allergy 17, 229234.CrossRefGoogle ScholarPubMed
Panin, AN, Violin, BV & Kovalev, VF (1997) Some problems due to antibiotic resistance and application of feed antibiotics in Russia. In The Medical Impact of the Use of Antimicrobials in Food Animals, section 2.3.9. Geneva: WHO.Google Scholar
Prescott, JF (1997) Antibiotics: Miracle drugs or pig food?. Canadian Veterinary Journal 38, 763766.Google ScholarPubMed
Prescott, JF, Sivendra, R & Barnum, DA (1978) The use of bacitracin in the prevention and treatment of experimentally-induced necrotic enteritis in the chicken. Canadian Veterinary Journal 19, 181183.Google ScholarPubMed
Quednau, M, Ahrne, S, Petersson, AC & Molin, G (1998) Antibiotic-resistant strains of Enterococcus isolated from Swedish and Danish retailed chicken and pork. Journal of Applied Microbiology 84, 11631170.CrossRefGoogle ScholarPubMed
Riddle, C, Lemons, CL, Papich, M & Altier, C (2000) Evaluation of ciprofloxacin as a representative of veterinary fluoroquinolones in susceptibility testing. Journal of Clinical Microbiology 38, 16361637.Google ScholarPubMed
Rollins, LD, Gaines, SA, Porcurull, DW, Mercer, HD & Frobish, LT (1976) Persistence of transferable drug resistance in the lactose-fermenting enteric flora of swine following antimicrobial feeding. Canadian Journal of Comparative Medicine 40, 175183.Google ScholarPubMed
Roth, FX & Kirchgessner, M (1994) The influence of avilamycin and tylosin on faecal excretion of nitrogen and amino acids in growing pigs. Agrobiology Research 47, 147155.Google Scholar
Rubenstein, E & Bompart, F (1997) Activity of quinupristin/dalfopristin against gram-positive bacteria: clinical application and therapeutic potential. Journal of Antimicrobial Chemotherapy 39, Suppl. A,139143.CrossRefGoogle Scholar
Rutter, JM (1997) Use of anti-infective drugs in the UK – types of use and conditions/legislation for applications. In The Medical Impact of the Use of Antimicrobials in Food Animals, section 2.3.5. Geneva: WHO.Google Scholar
Saenz, Y, Zarazaga, M, Lantero, M, Gastanares, MJ, Bacquero, F & Torres, C (2000) Antibiotic resistance in campylobacter strains isolated from|animals, foods and human in Spain in 1997–1998. Antimicrobial Agents and Chemotherapy 44, 267271.CrossRefGoogle ScholarPubMed
Salyers, AA & Amábile-Cuevas, CF (1997) Why are antibiotic resistance genes so resistant to elimination?. Antimicrobial Agents and Chemotherapy 41, 23212325.Google ScholarPubMed
Schouten, MA, Voss, A & Hoogkamp-Korstanje, JA (1999) Antimicrobial susceptibility patterns of enterococci causing infections in Europe. The European VRE Study Group. Antimicrobial Agents and Chemotherapy 43, 25422546.Google ScholarPubMed
Scientific Committee for Animal Nutrition (1996) Report of the Scientific Committee for Animal Nutrition (SCAN) on the Possible Risks for Humans in the Use of Avoparcin as a Feed Additive. Brussels, Belgium: European Commission.Google Scholar
Scientific Committee for Animal Nutrition (1998 a) Report of the Scientific Committee for Animal Nutrition (SCAN) on Efficacy and Risk for Users of the Therapeutic Macrolide Antibiotics Tylosin and Spiramycin Used as Feed Additives. Brussels, Belgium: European Commission.Google Scholar
Scientific Committee for Animal Nutrition (1998 b) Report of the Scientific Committee for Animal Nutrition (SCAN) on the Immediate and Longer-term Risk to the Value of Streptogramins in Human Medicine Posed by the Use of Virginiamycin as an Animal Growth Promoter. Brussels, Belgium: European Commission.Google Scholar
Settepani, JA (1984) The hazard of using chloramphenicol in food animals. Journal of the American Veterinary Medical Association 184, 3039.Google ScholarPubMed
Seyfarth, AM, Wegener, HC & Frimodt-Moller, N (1997) Antimicrobial resistance in Salmonella enterica subsp. enterica serovar typhimurium from humans and production animals. Journal of Antimicrobial Chemotherapy 40, 6775.CrossRefGoogle ScholarPubMed
Shryock, TR (1999) Relationship between usage of antibiotics in food-producing animals and the appearance of antibiotic resistant bacteria. International Journal of Antimicrobial Agents 12, 275278.Google ScholarPubMed
Simonsen, GS, Haaheim, H, Dahl, KH, Kruse, H, Lovseth, A, Olsvik, O & Sundsfjord, A (1998) Transmission of Van-A type vancomycin-resistant enterococci and van A resistance elements between chicken and humans at avoparcin-exposed farms. Microbial Drug Research 4, 313318.CrossRefGoogle Scholar
Smith, HW (1967) The effect of the use of antibacterial drugs, particularly as food additives, on the emergence of drug-resistant strains of bacteria in animals. New Zealand Veterinary Journal 15, 153166.CrossRefGoogle ScholarPubMed
Smith, HW (1973) Effect of prohibition of the use of tetracyclines in animal feeds on tetracycline resistance of faecal E. coli of pigs. Nature 243, 237238.CrossRefGoogle ScholarPubMed
Smith, KE, Besser, JM, Hedberg, CW, Leaner, FT, Bender, JB, Wickland, JH, Johnson, BP, Moore, KA & Osterholm, MT (1998) Quinolone-resistant Campylobacter jejuni infections in Minnesota. New England Journal of Medicine 340, 15251532.CrossRefGoogle Scholar
Stobberingh, E, van den Bogaard, A, London, N, Driessen, C, Top, J & Willems, R (1999) Enterococci with glycopeptide resistance in|turkeys, turkey|farmers, turkey slaughterers and (sub)urban residents in the south of The Netherlands: evidence for transmission of vancomycin resistance from animals to humans?. Antimicrobial Agents and Chemotherapy 43, 22152221.Google Scholar
Stokestad, ELR & Jukes, TH (1950) The multiple nature of the animal protein factor. Journal of Biological Chemistry 180, 647654.Google Scholar
Sunde, M, Fossum, K, Sloberg, A & Sorum, H (1998) Antibiotic resistance in Escherichia coli of the normal intestinal flora of swine. Microbial Drug Resistance 4, 289299.CrossRefGoogle ScholarPubMed
Sundlof, S, Cooper, J & Miller, M (1997) Safety requirements for antimicrobial drug products used in food producing animals. In The Medical Impact of the Use of Antimicrobials in Food Animals, section 2.2.3. Geneva: WHO.Google Scholar
Swann, MM (1969) Use of Antibiotics in Animal Husbandry and Veterinary Medicine. UK Joint Committee Report London: H.M. Stationery Office.Google Scholar
Taylor, DJ (1999) The pros and cons of antimicrobial use in animal husbandry. Baillière's Clinical Infectious Diseases 5, 269287.Google Scholar
Thomke, S & Elwinger, K (1997) Growth and Feed Efficiency Responses to Antibiotic Growth Promotants in Pigs and Poultry. Report to the Commission on Antimicrobial Feed Additives. Uppsala, Sweden: Swedish University & Agricultural Science.Google Scholar
Threlfall, EJ (1992) Antibiotic and the selection of food-borne pathogens. Journal of Applied Microbiology 83, 96S–102S.Google Scholar
Threlfall, EJ, Rowe, B & Ward, LR (1993) A comparison of multiple drug resistance in salmonellas from humans and food animals in England and Wales, 1981 & 1990. Epidemiology and Infection 111, 189197.CrossRefGoogle ScholarPubMed
Tsinas, AC, Kyriakis, SC, Lekkas, S, Sarris, K, Bourtzi-Hatzopoulou, E & Saoulidis, K (1998) Control of proliferative enteropathy in growing/fattening pigs using growth promoters. Zentralblatt für Veterinarmedizin 45B, 115127.Google Scholar
Turnidge, J (1998) What can be done about resistance to antibiotics?. British Medical Journal 317, 645647.CrossRefGoogle ScholarPubMed
van den Bogaard, AE, Jensen, L & Stobberingh, EE (1997) Vancomycin-resistant enterococci in turkeys and farmers. New England Journal of Medicine 337, 15581559.CrossRefGoogle ScholarPubMed
van den Bogaard, AE & Stobberingh, EE (1999) Antibiotic usage in animals. Drugs 58, 589607.CrossRefGoogle ScholarPubMed
van den Braak, N, van Belkum, A, van Keulen, M, Vliegenthart, J, Verbrugh, HA & Endtz, HP (1998) Molecular characterisation of vancomycin-resistant enterococci from hospitalised patients and poultry products in The Netherlands. Journal of Clinical Microbiology 36, 19271932.Google Scholar
van der Wolf, PJ, Bongers, JH, Elbers, AR, Franssen, FM, Hunneman, WA, van Exsel, AC & Tielen, MJ (1999) Salmonella infections in finishing pigs in the The Netherlands: bacteriological herd|prevalence, serogroup|and antibiotic resistance of isolates and risk factors for infection. Veterinary Microbiology 67, 263275.CrossRefGoogle ScholarPubMed
Velazquez, JB, Jiminez, A, Chomon, B & Villa, TG (1995) Incidence and transmission of antibiotic resistance in Campylobacter jejuni and Campylobacter coli. Journal of Antimicrobial Chemotherapy 35, 173178.CrossRefGoogle ScholarPubMed
Verbeke, W & Viaene, J (1996) Environmental Impact of Using Feed Additives. Report. Ghent, Belgium: University of Ghent.Google Scholar
Viaene, J (1997 a) The Swedish Animals Production System: Could it be Applied across the European Union? Report. Ghent, Belgium: University of Ghent.Google Scholar
Viaene, J (1997 b) Antimicrobials ban hits Swedish Production. Feed Mix 5, 2729.Google Scholar
Viaene, J (1997 c) Swedish questioning EU animal production models. Feedstuffs 16 June issue.Google Scholar
Wall, PG, Morgan, D, Lamden, K, Griffin, M, Threlfall, EJ, Ward, R & Rowe, B (1995) Transmission of multi-resistant strains of Salmonella typhimurium from cattle to man. Veterinary Record 136, 591592.CrossRefGoogle Scholar
Wegener, HC (1998) Historical yearly usage of glycopeptide for animals and humans: the American–European paradox revisited. Antimicrobial Agents and Chemotherapy 42, 3040.Google ScholarPubMed
Wegener, HC, Aarestrup, FM, Jensen, LB, Hammerum, AM & Bager, F (1999) Use of antimicrobial growth promoters in food animals and Enterococcus faecium resistance to therapeutic antimicrobial drugs in Europe. Emerging Infectious Diseases 5, 329335.CrossRefGoogle Scholar
Wegener, HC, Madsen, M, Nielsen, N & Aarestrup, FM (1997) Isolation of vancomycin resistant Enterococcus faecium from food. International Journal of Food Microbiology 35, 5766.CrossRefGoogle ScholarPubMed
Werner, G, Klare, I & Witte, W (1998) Association between quinupristin/dalfopristin resistance in glycopeptide-resistant Enterococcus faecium and the use of additives in animal feed. European Journal of Clinical Microbiology and Infectious Diseases 17, 401402.Google ScholarPubMed
Wicker, DL, Isgrigg, WN & Trammel, JH (1977) The control and prevention of necrotic enteritis in broilers with zinc bacitracin. Poultry Science 56, 12291231.CrossRefGoogle ScholarPubMed
Wierup, M (1997) Ten years without antibiotic growth promoters – results from Sweden with special reference to production results, alternative|disease preventive methods and the usage of antibacterial drugs. In The Medical Impact of the Use of Antimicrobials in Food Animals, section 5.1.b. Geneva: WHO.Google Scholar
Williams, RJ & Heymann, DL (1998) Containment of antibiotic resistance. Science 279, 11531154.CrossRefGoogle ScholarPubMed
Williams Smith, H (1980) Antibiotic-resistant Escherichia coli in market pigs in 1956–1979: the emergence of organisms with plasmid-borne trimethoprim resistance. Journal of Hygiene (London) 84, 467477.CrossRefGoogle ScholarPubMed
Witte, W (1997) Impact of antibiotic use in animal feeding on resistance of bacterial pathogens in humans (with Discussion). Ciba Foundation Symposium 207, 6175.Google Scholar
Witte, W (1998) Medical consequences of antibiotic use in agriculture. Science 279, 996997.CrossRefGoogle ScholarPubMed
Woodford, N (1998) Glycopeptide-resistant enterococci: a decade of experience. Journal of Medical Microbiology 47, 849862.CrossRefGoogle ScholarPubMed
Woodford, N, Warner, M & Aucken, HM (2000) Vancomycin resistance among epidemic strains of methicillin-resistant Staphylococcus aureus in England and Wales. Journal of Antimicrobial Chemotherapy 45, 258259.CrossRefGoogle ScholarPubMed
Woodward, KN (1991) Hypersensitivity in humans and exposure to veterinary drugs. Veterinary and Human Toxicology 33, 168172.Google ScholarPubMed
World Health Organization (1997) The Medical Impact of the Use of Antimicrobials in Food Animals. Geneva: WHO.Google Scholar
World Health Organization (1998) The Use of Quinolones in Food Animals and Potential Impact on Human Health. Geneva: WHO.Google Scholar
World Health Organization (1999) Informal Information Meeting on Antimicrobial Resistance Surveillance in Foodborne Pathogens. Geneva: WHO.Google Scholar
Wray, C, Hedges, R, Shannon, KP & Bradley, DE (1986) Apramycin and gentamicin resistance in Escherichia coli and salmonellas isolated from farm animals. Journal of Hygiene (London) 97, 445456.CrossRefGoogle ScholarPubMed
Wray, C, McLaren, IM & Beedell, YE (1993 a) Bacterial resistance monitoring of salmonella isolated from animals; national experience of surveillance schemes in the United Kingdom. Veterinary Microbiology 35, 313319.CrossRefGoogle ScholarPubMed
Wray, C, McLaren, IM & Carroll, PJ (1993 b) Escherichia coli isolated from animals in England and Wales between 1986 and 1991. Veterinary Record 133, 439442.CrossRefGoogle ScholarPubMed
Young, HK (1993) Antimicrobial resistance spread in aquatic environments. Journal of Antimicrobial Chemotherapy 31, 627635.CrossRefGoogle ScholarPubMed
You have Access
293
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Antibiotic use in animal feed and its impact on human healt
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Antibiotic use in animal feed and its impact on human healt
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Antibiotic use in animal feed and its impact on human healt
Available formats
×