Skip to main content Accessibility help
×
Home

Odour from animal production facilities: its relationship to diet

  • Phung D. Le (a1) (a2) (a3), André J. A. Aarnink (a1), Nico W. M. Ogink (a1), Petra M. Becker (a4) and Martin W. A. Verstegen (a2)...

Abstract

Though bad odour has always been associated with animal production, it did not attract much research attention until in many countries the odour production and emission from intensified animal production caused serious nuisance and was implicated in the health problems of individuals living near animal farms. Odour from pig production facilities is generated by the microbial conversion of feed in the large intestine of pigs and by the microbial conversion of pig excreta under anaerobic conditions and in manure stores. Assuming that primary odour-causing compounds arise from an excess of degradable protein and a lack of specific fermentable carbohydrates during microbial fermentation, the main dietary components that can be altered to reduce odour are protein and fermentable carbohydrates. In the present paper we aim to give an up-to-date review of studies on the relationship between diet composition and odour production, with the emphasis on protein and fermentable carbohydrates. We hypothesise how odour might be changed and/or reduced by altering the diet of pigs. Research so far has mainly focused on the single effects of different levels of crude protein and fermentable carbohydrates on odour production. However, also important for odour formation are the sources of protein and fermentable carbohydrates. In addition, it is not only the amount and source of these compounds that is important, but also the balance between them. On the basis of our review of the literature, we hypothesise that odour nuisance from pig production facilities might be reduced significantly if there is an optimum balance between protein and fermentable carbohydrates in the diet of pigs.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Odour from animal production facilities: its relationship to diet
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Odour from animal production facilities: its relationship to diet
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Odour from animal production facilities: its relationship to diet
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr André J. A. Aarnink, fax +31 317 476554, email Andre.Aarnink@wur.nl

References

Hide All
Aarnink, AJA (1997) Ammonia emission from houses for growing pigs as affected by pen design, indoor climate and behaviour. PhD thesis, Wageningen Agricultural University, The Netherlands.
Aarnink, AJA, Canh, TT & Bakker, GCM (1996) Effect of Dietary Fermentable Carbohydrates on the pH and the Ammonia Emission from Slurry of Growing-Finishing Pigs. Wageningen, The Netherlands: IMAG-DLO.
Aarnink, AJA, Hoeksma, P & Ouwerkerk, ENJ (1993) Factors affecting ammonium concentration in slurry from fattening pigs. In Nitrogen Flow in Pig Production and Environmental Consequences. European Association for Animal Production publication no. 69, pp. 413420 [Verstegen, MWA, den Hartog, LA and van Kempen, GJM, editors]. Wageningen, The Netherlands: EAAP.
Akobe, K (1936) Darstellung van D- und L -α-oxy-γ-methiobuttersäure und damit ausgeführte Ernährungsversuche (Description of D- and L -α-oxy-γ-methiobutteracid and their nutrition experiments). Hoppe-Seyler's Zeitschrift fur Physiologische Chemie 244, 1418.
American Society of Agricultural Engineers (1998) Manure Production and Characteristics. Proposal for ASAE D384.1. St Joseph, MI: American Society of Agricultural Engineers.
American Society of Agricultural Engineers (1989) Sulfide: physical, biological, and chemical characteristics. In Sulfide in Waste Water Collection and Treatment Systems. ASAE Manual Report of Engineering Practice no. 69, pp. 415 [Kienow, PE, editor]. New York: American Society of Civil Engineers, Chapter 2.
Amon, M, Dobeic, M, Sneath, RW, Phillips, VR, Misselbrook, TH & Pain, BF (1995) A farm–scale study on the use of clinoptilolite zeolite and De–Odorase for reducing odour and ammonia emissions from intensive fattening piggeries. Bioresource Technology 51, 163169.
Bakke, OM (1969) Urinary simple phenols in rats fed diets containing different amounts of casein and 10% tyrosine. Journal of Nutrition 98, 217221.
Bakker, GCM (1996) Interaction between carbohydrates and fat in pig diets; impact on energy evaluation of feeds. PhD thesis, Wageningen Agricultural University, The Netherlands.
Banwart, WL & Bremmer, MJ (1975) Identification of sulfur gases evolved from animal manures. Journal of Environmental Quality 4, 363366.
Barth, CL, Hill, DT & Polkowski, LB (1974) Correlating odour intensity index and odorous components in stored dairy manure. Transactions of the American Society of Agricultural Engineers 17, 742747.
Beard, WL & Guenzi, WD (1983) Volatile sulfur compounds from a redox-controlled cattle-manure slurry. Journal of Environmental Quality 12, 113116.
Bisaillon, JG, Beaudet, R, Lépine, F & Sylvestre, M (1994) Microbiological study of the carboxylation of phenols by methanogenic fermentation: a summary. Water Pollution Research Journal of Canada 29, 117127.
Blair, J, de Lange, K, Gillis, A & Feng, C (1999) Feeding Low Protein Finishing Diets to Reduce Nitrogen Excretion with Pig Manure. p. 12. Guelph, Canada: University of Guelph, Ontario Swine Research.
Bonnarme, P, Lapadatescu, C, Yvon, M & Spinnler, HE (2001) L –Methionine degradation potentialities of cheese–ripening microorganisms. Journal of Dairy Research 68, 663674.
Bouchard, R & Conrad, HR (1973) Sulphur requirement of lactating dairy cows 2: utilization of sulfates, molasses, and lignin–sulfonate. Journal of Dairy Science 56, 14291434.
Britz, ML & Wilkinson, RG (1983) Partial purification and characterization of two enzymes involved in isovaleric acid synthesis in Clostridium bifermentans. Journal of General Microbiology 129, 32273237.
Brot, N, Smit, Z & Weissbach, H (1965) Conversion of l –tyrosine to phenol by Clostridium tetanomorphum. Archives of Biochemistry and Biophysics 112, 16.
Canh, TT, Aarnink, AJA, Mroz, Z, Jongbloed, AW, Schrama, JW & Verstegen, MWA (1998 a) Influences of electrolyte balance and acidifying calcium salts in the diet of growing-finishing pigs on urinary pH, slurry pH and ammonia volatilisation from slurry. Livestock Production Science 56, 113.
Canh, TT, Aarnink, AJA, Schutte, JB, Sutton, A, Langhout, DJ & Verstegen, MWA (1998 b) Dietary protein affects nitrogen excretion and ammonia emission from slurry of growing–finishing pigs. Livestock Production Science 56, 181191.
Canh, TT, Aarnink, AJA, Verstegen, MWA & Schrama, JW (1998 c) Influences of dietary factors on the pH and ammonia emissions of slurry from growing–finishing pigs. Journal of Animal Science 76, 11231130.
Canh, TT, Sutton, AL, Aarnink, AJA, Verstegen, MWA, Schrama, JW & Bakker, GCM (1998 d) Dietary carbohydrates alter faecal composition and pH and ammonia emission from slurry of growing pigs. Journal of Animal Science 76, 18871895.
Canh, TT, Verstegen, MWA, Aarnink, AJA & Schrama, JW (1997) Influence of dietary factors on nitrogen portioning and composition of urine and faeces of fattening pigs. Journal of Animal Science 75, 700706.
Capel, ID, Millburn, P & Williams, RT (1974) The conjugation of 1– and 2–naphthols and other phenols in the cat and pig. Xenobiotica 4, 601615.
Chen, A, Liao, PH & Lo, KV (1994) Headspace analysis of malodorous compounds from swine waste water under aerobic treatment. Bioresource Technology 49, 8387.
Chin, HW & Lindsay, RC (1994) Ascorbate and transition-metal mediation of methanethiol oxidation to dimethyl disulfide and dimethyl trisulfide. Food Chemistry 49, 387392.
Chung, KL, Anderson, GM & Fulk, GE (1975) Formation of indoleacetic acid by intestinal anaerobes. Journal of Bacteriology 124, 573575.
Claesson, R, Edlund, MB, Persson, S & Carlsson, J (1990) Production of volatile sulfur compounds by various Fusobacterium species. Oral Microbiology and Immunology 5, 137142.
Clanton, CJ & Schmidt, DR (2001) Sulfur compounds in gases emitted from stored manure. Transactions of the American Society of Agricultural Engineers 43, 12291239.
Colina, JJ, Lewis, AJ, Miller, PS & Fischer, RL (2001) Dietary manipulation to reduce aerial ammonia concentrations in nursery pig facilities. Journal of Animal Science 79, 30963103.
Cooper, P & Cornforth, IS (1978) Volatile fatty acids in stored animal slurry. Journal of the Science of Food and Agriculture 29, 1927.
Cromwell, GL & Coffey, RD (1994) Nutritional Technologies to Reduce the Nutrient Content of Swine Manure. Des Moines, IA: National Park Board.
Cromwell, GL, Turner, LW, Gates, RS, Taraba, JL, Lindemann, MD, Traylor, SL, Dozier, WA III & Monegue, HJ (1999) Manipulation of swine diets to reduce gaseous emissions from manure that contributes to odour. Journal of Animal Science 77, Suppl. 1, 69 Abstr.
Curtis, SE (1993) Environmental Management in Animal Agriculture. Ames, IA: Iowa State University Press.
DeCamp, SA, Hill, BE, Hankins, SL, Bundy, DC & Powers, WJ (2001) Effects of soybean hulls in commercial diet on pig performance, manure composition, and selected air quality parameters in swine facilities. Journal of Animal Science 79, Suppl. 1, 252 Abstr.
DeMoss, RD & Moser, K (1969) Tryptophanase in diverse bacterial species. Journal of Bacteriology 98, 167171.
Dierick, NA, Vervaeke, IJ, Demeyer, DI & Decuypere, JA (1989) Approach to the energetic importance of fibre digestion in pigs. Importance of fermentation in the overall energy supply. Animal Feed Science and Technology 23, 141167.
Donham, KJ (2000) The concentration of swine production. Effects on swine health, productivity, human health and the environment. Veterinary Clinician of North America. Food Animal Practice 16, 559597.
Donham, KJ, Haglind, P, Petersen, Y, Rylander, R & Berlin, L (1989) Environmental health studies of farm workers in Swedish confinement buildings. British Journal of Industrial Medicine 46, 3137.
Donham, KJ, Knap, LW, Monson, R & Gustafson, K (1982) Acute toxic exposure to gases from liquid manure. Journal of Occupation Medicine 24, 142145.
Dorland, W (2003) Health Library. Dorland's Illustrated Medical Dictionary. W.B. Saunders, Harcourt Health Services. www.mercksource.com/pp/us/cns/cns_home.jsp
Drasar, BS & Hill, MJ (1974) Human Intestinal Flora. London, New York, and San Francisco: Academic Press.
Elsden, SR & Hilton, MG (1978) Volatile acid production from threonine, valine, leucine and iso-leucine by clostridia. Archives of Microbiology 117, 165172.
Elsden, SR, Hilton, MG & Waller, JM (1976) The end products of the metabolism of aromatic amino acids by clostridia. Archives of Microbiology 107, 283288.
Engehard, WV (1995) Absorption of short chain fatty acids from the large intestine In Physiological and Clinical Aspects of Short Chain Fatty Acid Metabolism, pp. 149170. [Cummings, JH, Rombeau, JL and Sakata, T, editors]. Cambridge, UK: Cambridge University Press.
European Committee for Standardization (2003) CEN Standard 13725. Air Quality – Determination of Odour Concentration by Dynamic Olfactometry. Brussels, Belgium: European Committee for Standardization.
Ferchichi, M, Hemme, D & Nardi, M (1985) Production of methanethiol from methionine by Brevibacterium linens CNRZ 918. Journal of General Microbiology 131, 715723.
Geypens, B, Claus, D, Evenepoel, P, Hiele, M, Maes, B, Peeters, M, Rutgeerts, P & Ghoos, Y (1997) Influence of dietary protein supplements on the formation of bacterial metabolites in the colon. Gut 41, 7076.
Giusi-Perier, A, Fiszlelewicz, M & Rerat, A (1989) Influence of diet composition on intestinal volatile fatty acids and nutrient absorption in unanesthetized pigs. Journal of Animal Science 67, 386402.
Goa, Y, Rideout, T, Lackeyram, D, Archbold, T, Fan, MZ, Squires, EJ, Duns, G, de Lange, CFM & Smith, TK (1999) Manipulation of hindgut fermentation to reduce the excretion of selected odor–causing compounds in pigs. In Symposium of the Hog Environmental Management Strategy (HEMS). Agriculture and Agri-food Canada Ottawa, Ontario http://www.cpc-ccp.com/HEMS/proceedings.PDF
Goldberg, S, Cardash, H, Browning, HI, Sahly, H & Rosenberg, M (1997) Isolation of Enterobacteriaceae from the mouth and potential association with malodor. Journal of Dental Research 76, 17701775.
Goldberg, S, Kozlovsky, A, Gordon, D, Gelernter, I, Sintov, A & Rosenberg, M (1994) Cadaverine as a putative component of oral malodour. Journal of Dental Research 73, 11681172.
Gralapp, AK, Powers, WJ, Faust, MA & Bundy, DS (2002) Effects of dietary ingredients on manure characteristics and odorous emissions from swine. Journal of Animal Science 80, 15121519.
Gummalla, S & Broadbent, JR (2001) Tyrosine and phenylalanine catabolism by Lactobacillus cheese flavor adjuncts. Journal of Dairy Science 84, 10111019.
Hahn, JD, Biehl, RR & Baker, DH (1995) Ideal digestible lysine level for early– and late–finishing swine. Journal of Animal Science 73, 773784.
Hammond, EG, Heppner, C & Smith, R (1989) Odors of swine waste lagoons. Agriculture, Ecosystems and Environment 25, 103110.
Hawe, SM, Walker, N & Moss, BW (1992) The effects of dietary fibre, lactose and antibiotic on the levels of skatole and indole in faeces and subcutaneous fat in growing pigs. Animal Production 54, 413419.
Hengemuehle, SM & Yokoyama, MT (1990) Isolation and characterization of an anaerobe from swine cecal contents which produces 3–methylindole and 4–methylphenol. Journal of Animal Science 68, 408A.
Hobbs, JP, Brian, FP, Roger, MK & Lee, PA (1996) Reduction of odorous compounds in fresh pig slurry by dietary control of crude protein. Journal of the Science of Food and Agriculture 74, 508514.
Hobbs, PJ, Misselbrook, TH & Cumby, TR (1999) Production and emission of odours and gases from aging pig waste. Journal of Agricultural Engineering Research 72, 291298.
Hobbs, PJ, Misselbrook, TH & Pain, BF (1997) Characterisation of odorous compounds and emissions from slurries produced from weaner pigs fed dry feed and liquid diets. Journal of the Science of Food and Agriculture 73, 437445.
Hobbs, PJ, Misselbrook, TH & Pain, BF (1998) Emission rates of odorous compounds from pig slurries. Journal of the Science of Food and Agriculture 77, 341348.
Honeyfield, DC & Carlson, JR (1990) Assay for the enzymatic conversion of indoleacetic acid to 3–methylindole in a ruminal Lactobacillus species. Applied and Environmental Microbiology 56, 724729.
Hori, H, Takabayashi, K, Orvis, L, Carson, DA & Nobori, T (1996) Gene cloning and characterization of Pseudomonas putida l -methionine-α-deamino-gamma-mercaptomethane-lyase. Cancer Research 56, 21162122.
Ichihara, K, Yoshimatsu, H& Sakamoto, Y (1956) Studies on phenol formation. 3. Ammonium and potassium ions as the activator of beta–tyrosinase. Journal of Biochemistry 43, 803.
Inoue, H, Inagaki, K, Sugimoto, M, Esaki, N, Soda, K & Tanaka, H (1995) Structural analysis of the l -methionine gamma-lyase gene from Pseudomonas putida. Journal of Biochemistry 117, 11201125.
Iverson, M, Kirychuk, S, Drost, IL & Jacobson, (2000) Human health effects of dust exposure in animal confinement buildings. Journal of Agricultural Safety and Health 6, 283286.
Jackman, PJH (1982) Body odour – the role of skin bacteria. Seminars in Dermatology 1, 143148.
Jacob, JP, Blair, R, Benett, DC, Scott, T & Newbery, R (1994) The effects of dietary protein and amino acid levels during the grower phase on nitrogen excretion of broiler chickens. In Proceedings of the 29th Pacific Norhwest Animal Nutrition Conference, p. 137. Vancouver, B.C., Canada.
Jacobson, LD, Clanton, CJ, Schmidt, DR, Radman, C, Nicolai, RE & Janni, KA (1997) Comparison of hydrogen sulfide and odor emissions from animal manure storages. In International Symposium on Ammonia and Odour Control from Animal Production Facilities, 6–10 10 1997, Winkleloord, The Netherlands. 405412. [Voermans, JAM and Rosmalen, GJ, editors]. Rosmalen, The Netherlands: NVTL.
Jensen, BB & Jørgensen, H (1994) Effect of dietary fibre on microbial activity and microbial gas production in various regions of the gastrointestinal tract of pigs. Applied and Environmental Microbiology 60, 18971904.
Ji-Qin, N, Albert, JH, Claude, AD & Teng, TL (2000) Ammonia, hydrogen sulphide and carbon dioxide release from pig manure in under-floor deep pits. Journal of Agricultural Engineering Research 77, 5366.
Jongbloed, AW (1987) Phosphorus in the feeding of pigs; effect of diet on the absorption and retention of phosphorous by growing pigs. PhD thesis, Wageningen Agricultural University, Lelystad, The Netherlands.
Jongbloed, AW & Lenis, NP (1993) Excretion of nitrogen and some minerals by livestock In Nitrogen Flow in Pig Production and Environmental Consequences. European Association for Animal Production publication no. 69, pp. 2236. [Verstegen, MWA, den Hartog, LA and van Kempen, GJM, editors]. Wageningen, The Netherlands: EAAP.
Jørgensen, H & Just, A (1998) Effect of different dietary components on site of absorption/site of disappearance of nutrients In Fourth International Seminar at the Institute of Animal Physiology and Nutrition. pp. 230239. [Buraczewska, L, Buraczewski, S, Pastuszewska, B and Zebrowska, T, editors]. Warsaw: Polish Academy of Sciences.
Kadota, H & Ishida, Y (1972) Production of volatile sulfur compounds by microorganims. Annual Review of Microbiology 26, 127138.
Kay, RM & Lee, PA (1997) Ammonia emission from pig buildings and characteristics of slurry produced by pigs offered low crude protein diets. In International Symposium on Ammonia and Odour Control from Animal Production Facilities. pp. 253259. [Voermans, JAM and Monteny, GJ, editors]. Rosmalen, The Netherlands: NVTL.
Kelly, DP, Wood, AP, Jordan, SL, Padden, AN, Gorlenko, VM & Dubinina, GA (1994) Biological production and consumption of gaseous organic sulphur compounds. Biochemical Society Transactions 22, 10111015.
Kendall, DC, Richert, BT, Sutton, AL, Frank, JWDeCamp, SA, Bowers, KA, Kelly, DT & Cobb, M (1999) Effects of fibre addition (10% soybean hulls) to a reduced crude protein diet supplemented with synthetic amino acids versus a standard commercial diet on the performance, pit composition, odour and ammonia levels in swine buildings. Journal of Animal Science 77, Suppl., 176 Abstr.
Kenealy, WRCao, Y & Weimer, PJ (1995) Production of caproic acid by cocultures of ruminal cellulolytic bacteria and Clostridium kluyveri grown on cellulose and ethanol. Applied Microbiology and Biotechnology 44, 507513.
Kerr, BJ (1995) Proceedings of New Horizons in Animal Nutrition and Health. p. 47. Raleigh, NC: North Carolina State University.
Kerr, BJMcKeith, FK & Easter, RA (1995) Effect on performance and carcass characteristics of nursery to finisher pigs fed reduced crude protein, amino acid-supplemented diets. Journal of Animal Science 73, 433440.
Klarenbeek, JVJongebreur, AA & Beumer, SCC (1982) Odour Emission in Pig Fattening Sheds. Wageningen, The Netherlands: IMAG.
Knarreborg, A, Beck, J, Jensen, MT, Laue, A, Agergaard, N & Jensen, BB (2002) Effect of non-starch polysaccharides on production and absorption of indolic compounds in entire male pigs. Animal Science 74, 445453.
Kowalewsky, HH, Scheu, R & Vetter, H (1980) Measurement of odour emissions and emissions In Effluent from Livestock, pp. 609626. [Gasser, LKE, editor]. London: Applied Science Publishers.
Kreis, W & Hession, C (1973) Isolation and purification of L –methionine–alpha–deamino–gamma–mercaptomethane–lyase ( l –methioninase) from Clostridium sporogenes. Cancer Research 33, 18621865.
Liu, QDSB, Bundy, DS & Hoff, SJ (1993) Utilizing ammonia concentrations as an odour threshold indicator for swine facilities. In IVth International Symposium on Livestock Environment, pp. 678685. [Collins, C and Boon, C, editors]. St Joseph, MI: American Society of Agricultural Engineers.
Loesche, WJ & Gibbons, RJ (1968) Amino acid fermentation by Fusobacterium nucleatum. Archives of Oral Biology 13, 191201.
Lopez, J, Goodband, RD, Allee, GL, Jesse, GW, Nelssen, JL, Tokach, MD, Spiers, D & Becker, BA (1994) The effects of diets formulated on an ideal protein basis on growth performance, carcass characteristics, and thermal balance of finishing gilts housed in a hot, diurnal environment. Journal of Animal Science 72, 367379.
Lunn, F & van de Vyver, J (1977) Sampling and analysis of air in pig houses. Agriculture and Environment 3, 159170.
McGill, AEJ & Jackson, N (1977) Changes in short chain carboxylic acid content and chemical oxygen demand of stored pig slurry. Journal of the Science of Food and Agriculture 28, 424430.
Mackie, RI (1994) Microbial production of odor components In International Round Table on Swine Odor Control, pp. 1819. Ames, IA: Iowa State University.
Mackie, RI, Stroot, PG & Varel, VH (1998) Biochemical identification and biological origin of key odour components in livestock waste. Journal of Animal Science 76, 13311342.
Mellon, FA (1994) Mass spectroscopy In Spectroscopic Techniques for Food Analysis, pp. 181219. [Wilson, RH, editor]. New York: VCH Publishers.
Mikkelsen, LL & Jensen, BB (1996) Growth and skatole (3-methylindole) production by Clostridium scatologenes grown in batch and continuous cultures. Journal of Applied Bacteriology 81, XVIII.
Miner, JR (1995) A Review of the Literature on the Nature and Control of Odors from Pork Production Facilities, pp. 118. Corvallis, OR: Bioresource Engineering Department, Oregon State University.
Miner, JR, Kelly, MD & Anderson, AW (1975) Identification and measurement of volatile compounds within a swine building and measurement of ammonia evolution rates from manure–covered surfaces. In Managing Livestock Wastes, Proceedings of the 3rd International Symposium on Livestock Wastes, ASAE Proc–275, pp. 351353. St Joseph, MI: American Society of Agricultural Engineers.
Misselbrook, TH, Clarkson, CR & Pain, BF (1993) Relationship between concentration and intensity of odours for pig slurry and broiler houses. Journal of Agricultural Engineering Research 55, 163169.
Moeser, AJ, van Heugten, T& [van Kempen, T (2001) Diet composition affects odor characteristics from swine manure. In NCSU Annual Swine Report [van Heugten, E, Rozeboom, K & See, T, editors]. http://mark.asci.ncsu.edu/SwineReports/2001/01manadam.htp
Mogens, TJ, Raymond, PC & Bent, BJ (1995) 3–-Methylindole (skatole) and indole production by mixed populations of pigs fecal bacteria. Applied and Environmental Microbiology 61, 31803184.
Morgan, CA & Whittemore, CT (1998) Dietary fibre and nitrogen excretion and retention by pigs. Animal Feed Science and Technology 19, 185189.
Morrison, RT & Boyd, RN (1987) Organic Chemistry, 5th ed. Boston, MA: Allyn & Bacon.
Mortensen, PB, Holtug, K & Rasmussen, HS (1987) Short-chain fatty acid production from mono and disaccharides in a fecal incubating system: implications for colonic fermentation of dietary fiber in humans. Nutrition Journal 118, 321325.
Mroz, Z, Jongbloed, AW, Partanen, KH, Vreman, K, Kemme, PA & Kogut, J (2000) The effect of calcium benzoate in diets with or without organic acids on dietary buffering capacity, apparent digestibility, retention of nutrients, and manure characteristics in swine. Journal of Animal Science 78, 26222632.
Müller, HL & Kirchgessner, M (1995) Energetische verwertung von pektin bei sauen. Zeitschrift für Tierphysiologie, Tierenährung und Futtermittelkde 54, 1420.
Nahm, KH (2002) Efficient feed nutrient utilization to reduce pollutants in poultry and swine manure. Animal Science 32, 116 Abstr.
Nakano, Y, Yoshimura, M & Koga, T (2002) Correlation between oral malodor and periodontal bacteria. Microbes and Infection 4, 679683.
Nisman, B (1954) The Stickland reaction. Bacteriological Reviews 18, 1642.
Noren, O (1986) Design and use of bio filter for livestock buildings. In Odour Prevention and Control of Organic Sludge and Livestock Farming, pp. 234237. [Neilsen, VC, Voorburg, JH and L'Hermite, P, editors]. London: Elsevier Applied Science Publishers.
Obrock, HCMiller, PS & Lewis, AJ (1997) The Effect of Reducing Dietary Crude Protein Concentration on Odour in Swine Facilities, Nebraska Swine Report, pp. 1416. Lincoln, NB: University of Nebraska-Lincoln.
Odam, EM, Page, JMJ, Townsend, MG & Wilkins, JPG (1986) Identification of volatile components in headspace from animal slurries In Odour Prevention and Control of Organic Sludge and Livestock Farming, pp. 284295 [Nielsen, VC, Voorburg, JH, L'Hermite, P, editors] London: Elsevier Applied Science Publishers.
Ogink, NWM & Groot Koerkamp, PWG (2001) Comparison of odour emissions from animal housing systems with low ammonia emission. Water Science and Technology 43, 245252.
Ohkishi, H, Nishikawa, D, Kumagai, H & Yamada, H (1981) Distribution of cysteine desulfhydrase in microorganisms. Agricultural and Biological Chemistry 45, 253257.
Ohta, Y & Kuwada, Y (1998) Rapid deodorization of cattle faeces by microorganisms. Biological Wastes 24, 227240.
Oldenburg, J (1989) Geruchs– und Ammoniak– Emissionen aus der Tierhaltung. In Munster-Hiltrup, Herausgegebe vom, Kuratorium für Technik und Bauwensen in der Landwirtschaft e.v. 6100 Darmstadt-Kranichstein.
Oldenburg, J & Heinrichs, P (1996) Quantitative Aspecte einer proteinreduzierten Schweinemast (Quantitative aspects of a protein–reduced pig fattening). Lohamann Information 1, 1316.
O'Neill, DH & Phillips, VRA (1992) Review of the control of odour nuisance from livestock buildings. Part 3: properties of the odorous substances which have been identified in livestock wastes or in the air around them. Journal of Agricultural Engineering Research 53, 2350.
Otto, ER, Yokoyama, M, Von Bermuth, RD, van Kempen, T & Trottier, NL (2003) Ammonia, volatile fatty acids, phenolics and odour offensiveness in manure from growing pigs fed diets reduced in protein concentration. Journal of Animal Science 81, 17541763.
Pain, BF, Misselbrook, TH, Clarkson, CR & Rees, YJ (1990) Odour and ammonia emission following the spreading of anaerobically-digested pig slurry on grassland. Biological Wastes 34, 149160.
Parliment, TH, Kolor, MG & Rizzo, DJ (1982) Volatile components of Limburger cheese. Journal of Agricultural and Food Chemistry 30, 10061008.
Patni, NK & Clarke, SP (1990) Transient hazardous conditions in animal buildings due to manure gas released during slurry mixing In Sixth International Symposium on Agricultural and Food Processing Wastes, pp. 449459. [Engineers, ASOA, editors]. St Joseph, MI: American Society of Agriculture Engineers.
Phillips, D, Fattori, M & Bulley, R (1979) Swine manure odours: sensory and physico–chemical analysis Joint Meeting of ASAE and CSAE Winnipeg.
Phillips, VR, Pain, BF, Clarkson, CR & Klarenbeek, JV (1990) Studies on reducing the odour and ammonia emissions during and after the land spreading of animal slurries. Farm Building Engineering 7, 1723.
Punter, PH, Koster, EP, Schaefer, J & Maiwald, KD (1986) Odour concentration and odour annoyance. In Odour Prevention and Control of Organic Sludge and Livestock Farming, pp. 146152. [Nielsen, VC, Voorburg, JH, L'Hermite, P]. London: Elsevier Applied Science Publishers.
Rasmussen, HS, Holtug, K & Mortensen, PB (1988) Degradation of amino acids to short–chain fatty acids in humans. An in vitro study. Scandinavian Journal of Gastroenterology 23, 178182.
Ren, Y (1999) Is carbonyl sulfide a precursor for carbon disulfide in vegetation and soil? Interconversion of carbonyl sulfide and carbon disulfide in fresh grain tissues in vitro. Journal of Agricultural and Food Chemistry 47, 21412144.
Ritter, WF (1989) Odour control of livestock wastes: state-of-the-art in North America. Journal of Agricultural Engineering Research 42, 5162.
Sawyer, CH & McCarty, PL (1978) Sulfate. In Chemistry for Environmental Engineering, pp. 476481. New York: McGraw-Hill Book Co., chapter 28.
Schaefer, J (1977) Sampling, characterization and analysis of malodours. Agriculture and Environment 3, 121127.
Schaefer, J (1980) Development of instrumental methods for measuring odour levels in intensive livestock building. In Effluents from Livestock, 513534. [Gasser, LKE, editor]. London: Applied Science Publishers.
Schaefer, J, Bemelnans, JMH & ten Noever de Brauw, MC (1974) Research into the components responsible for the smell of piggeries. Landbouwkundig Tijdschrift 86, 228232.
Schenker, M, Christiani, D & Cormier, Y (1998) Respiratory health hazards in agriculture. American Journal of Respiratory Critical Care Medicine 158, Suppl., S1–S76.
Schenker, M, Ferguson, T & Gamsky, T (1991) Respiratory risks associated with agriculture. Occupational Medicine: State of the Art Reviews 6, 415428.
Schirz, S (1986) Design and experience obtained with bio-scrubbers. In Odour Prevention and Control of Organic Sludge and Livestock Farming. pp. 241250. [Neilsen, VC, Voorburg, JH and L'Hermite, P, editors]. London: Elsevier Applied Science Publishers.
Schlegel, HG (1986) General Microbiology: Cambridge, UKCambridge University Press.
Schneider, S, Mohamed, ME & Fuchs, G (1997) Anaerobic metabolism of l –phenylalanine via benzoyl–CoA in the denitrifying bacterium Thauera aromatica. Archives of Microbiology 168, 310320.
Schulte, DDKottwitz, DA & Gilbertson, CB (1985) Nitrogen content of scraped swine manure. In Vth International Symposium on Agricultural Waste, Chicago, pp. 321328. [Converse, JC, editor]. St Joseph, MI: American Society of Agricultural Engineers.
Segal, W & Starkey, RL (1969) Microbial decomposition of methionine and identity of the resulting sulfur products. Journal of Bacteriology 98, 908913.
Shi, XS & Noblet, J (1993) Contribution of the hindgut to digestion of diets in growing pigs and adult sows: effect of diet composition. Livestock Production Science 34, 237252.
Shriver, JA, Carter, SD, Sutton, AL, Richert, BT, Senne, BW & Pettey, LA (2003) Effects of adding fiber sources to reduced-crude protein, amino acid-supplemented diets on nitrogen excretion, growth performance, and carcass traits of finishing pigs. Journal of Animal Science 81, 492502.
Smith, GM, Kim, BW, Franke, AA & Roberts, JD (1985) 13C NMR studies of butyric fermentation in Clostridium kluyveri. Biology and Chemistry 260, 1350913512.
Smith, RL & Williams, RT (1966) Glucuronic Acid. Free and Combined. New York and London: Academic Press.
Sommer, SG & Husted, S (1995) The chemical buffer system in raw and digested animal slurry. Journal of Agricultural Science 124, 4553.
Spoelstra, SF (1976) Simple phenols and indoles in anaerobically stored piggery wastes. Journal of the Science of Food and Agriculture 28, 415423.
Spoelstra, SF (1979) Microbial aspect of the formation of malodorous compounds in anaerobically stored piggery wastes. PhD thesis, Wageningen Agricultural University, The Netherlands.
Spoelstra, SF (1980) Origin of objectionable odorous components in piggery wastes and the possibility of applying indicator components for studying odour development. Agriculture and Environment 5, 241260.
Stadtman, TC (1963) Anaerobic degradation of lysine. 2. Cofactor requirements and properties of the soluble enzyme system. Biology and Chemistry 238, 27662773.
Stevens, RJ, Laughlin, RJ & Frost, JP (1989) Effect of acidification with sulphuric acid on the volatilization of ammonia from cow and pig slurries. Journal of Agricultural Science 113, 389395.
Stevens, RJ, Laughlin, RJ & Frost, JP (1993) Effects of diet and storage time on the concentration of sulphides on dairy cow slurry. Bioresource Technology 45, 1316.
Stryer, L (1995) Biochemistry, 4th ed. New York: W.H. Freeman.
Susan, SS, Jeanette, LB & James, HR (2001) Quantification of odors and odorants from swine operations in North Carolina. Agricultural and Forest Meteorology 108, 213240.
Sutton, AL, Kephart, KB, Patterson, JA, Mumma, R, Kelly, DT, Bous, E, Don, BS, Jones, DD & Heber, AJ (1997) Dietary manipulation to reduce ammonia and odorous compounds in excreta and anaerobic manure storage. In International Symposium on Ammonia and Odour Control from Animal Production Facilities. pp. 245252. [Voermans, JAM and Monteny, GJ, editors]. Rosmalen, The Netherlands: NVTL.
Sutton, AL, Kephart, KB, Verstegen, MWA, Canh, TT & Hobbs, PJ (1999) Potential for reduction of odorous compounds in swine manure through diet modification. Journal of Animal Science 77, 430439.
Sutton, AL, Patterson, JA, Adeola, OL, Richert, BA, Kelly, DT, Heber, AJ, Kephart, KB, Mumma, R & Bogus, E (1998) Reducing sulfur-containing odours through diet manipulation. In Animal Production Systems and the Environment, pp. 125130. Des Moines, IA: Iowa State University.
Suzuki, K, Benno, Y, Mitsuoka, T, Takebe, S, Kobashi, K & Hase, J (1979) Urease-producing species of intestinal anaerobes and their activities. Applied and Environmental Microbiology 37, 379382.
Turton, LJ, Drucker, DB & Ganguli, LA (1983) Effect of glucose concentration in the growth medium upon neutral and acidic fermentation end-products of Clostridium bifermentans, Clostridium sporogenes and Peptostreptococcus anaerobius. Journal of Medical Microbiology 16, 6167.
van der Peet-Schwering, CMC, Verdoes, CMC, Voermans, MP & Beelen, GM (1996) Effect of Feeding and Housing on the Ammonia Emission of Growing and Finishing Pig Facilities, report no. P1.145. Rosemalen, The Netherlands: Research Institute for Pig Husbandry.
van Geelen, M & van der Hoek, KW (1985) Odour Abatement Techniques for Intensive Livestock Units. AFRC Engineering Translation, no. 535 Silsoe, Bedford, UK: AFRG Institute of Engineering Research.
van Heugten, E & van Kempen, TA (2002) Growth performance, carcass characteristics, nutrient digestibility and fecal odorous compounds in growing-finishing pigs fed diets containing hydrolyzed feather meal. Journal of Animal Science 80, 171178.
van Soest, P (1983) Nutrition Ecology of the Ruminant. Corvallis, OR: O&B Books, Inc.
Varel, VH, Bryant, MP, Holdeman, LV & Moore, WEC (1974) Isolation of ureolytic Peptostreptococcus productus from feces using defined medium; failure of common urease test. Journal of Applied Microbiology 28, 594599.
VDI (1997 a) Guideline 3882, part 1, Determination of Odour Intensity. Düsseldorf, Germany: VDI.
VDI (1997 b) Guideline 3882, part 2, Determination of Hedonic Tone. Düsseldorf, Germany: VDI.
Verdoes, N & Ogink, NWM (1997) Odour emission from pig houses with low ammonia emission In International Symposium on Ammonia and Odour Control from Pig Production Facilities, Winkeloord, The Netherlands 252317. [Voermans, JAM and Monteny, GJ, editors]. Rosmalen, The Netherlands: NVTL.
Wathes, CM, Jones, JB, Kristensen, HH, Jones, EKM & Webster, AJF (2002) Aversion of pigs and domestic fowl to atmospheric ammonia. Transactions of the American Society of Agricultural Engineers 45, 16051610.
Williams, AG (1984) Indicators of piggery slurry odour offensiveness. Agricultural Waste 10, 1536.
Williams, AG & Evans, MR (1981) Storage of piggery slurry. Agricultural Waste 3, 311321.
Winneke, G (1992) Structure and determinants of psychological response to odorant/irritation air pollution. Annals of the New York Academy of Sciences 641, 261276.
Wozny, MA, Bryant, MP, Holdeman, LV & Moore, WEC (1977) Urease assay and urease-producing species of anaerobes in the bovine rumen and human feces. Journal of Applied Microbiology 33, 10971104.
Yasuhara, A, Fuwa, K & Jimbu, M (1984) Identification of odorous compounds in fresh and rotten swine manure. Agricultural and Biological Chemistry 48, 30013010.
Yokoyama, MT & Carlson, JR (1974) Dissimilation of tryptophan and related compounds by ruminal microorganisms in vivo. Journal of Applied Microbiology 27, 540548.
Yokoyama, MT, Carlson, JR & Holdeman, LV (1977) Isolation and characteristics of a skatole-producing Lactobacillus sp. from the bovine rumen. Applied and Environmental Microbiology 6, 837842.
Yoshimura, M, Nakano, Y, Yamashita, Y, Oho, T, Saito, T & Koga, T (2000) Formation of methyl mercaptan from l -methionine by Porphyromonas gingivalis. Infection and Immunity 68, 69126916.
Younes, H, Remesy, C, Behr, S & Demigne, C (1997) Fermentable carbohydrate exerts a urea-lowering effect in normal and nephrectomized rat. American Journal of Physiology 272, 515521.
Zahn, JA, DiSpirito, AA, Do, YS, Brooks, BE, Cooper, EE & Hatfield, JL (2001) Correlation of human olfactory responses to airborne concentrations of malodorous volatile organic compounds emitted from swine effluent. Journal of Environmental Quality 30, 624634.
Zahn, JA, Hatfield, JL, Do, YS, DiSpirito, AA, Laird, DA & Pfeiffer, RL (1997) Characterisation of volatile organic emissions and wastes from a swine production facility. Journal of Environmental Quality 26, 16871696.
Zervas, S & Zijlstra, RT (2002) Effects of dietary protein and oat hull fibre on nitrogen excretion patterns and plasma urea in grower pigs. Journal of Animal Science 80, 32383246.
Zhu, J (2000) A review of microbiology in swine manure odor control. Agriculture, Ecosystems and Environment 78, 93106.
Zijlstra, RT, Oryschak, MA, Zervas, S & Ekpe, DE (2001) Diet manipulation to reduce nutrient content in swine manure Focus on the Future Conference Alberta, Canada Red Deer http://triumph.usask.ca/psc/pdf/psc/69.pdf

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed