Skip to main content
×
×
Home

Are corridors good for tigers Panthera tigris but bad for people? An assessment of the Khata corridor in lowland Nepal

  • Per Wegge (a1), Shailendra Kumar Yadav (a2) and Babu Ram Lamichhane (a3)
Abstract

As part of a landscape-scale programme for conserving tigers Panthera tigris the Khata corridor was established between Bardia National Park in Nepal and Katarniaghat Wildlife Sanctuary in India in early 2000. We examined its functionality by comparing the status of tigers and prey in the corridor and in the adjacent National Park, using camera trapping, transect sampling and diet analysis of scats. Tiger movement was inferred from the photographs, and tiger–human conflict was assessed by means of questionnaires and interviews. The corridor harboured transient individuals as well as resident, breeding tigers. Tigers with core areas in the corridor were also recorded in the two protected areas, and vice versa. Wild prey was 3–4 times more abundant in the area of the National Park bordering the corridor than in the corridor itself, and domestic livestock constituted 12–15% of the tigers’ food in the corridor. Livestock losses and human fatalities or injuries were relatively low compared to within the buffer zones of the National Parks. Despite such problems and restrictions on grazing and extraction of natural resources, local residents were generally positive towards tigers and the corridor. The successful establishment of the corridor and the positive attitudes of local people were attributable to community development programmes initiated to compensate for the imposed restrictions, financed by the government and national and international organizations. By linking Bardia National Park and Katarniaghat Wildlife Sanctuary via the Khata corridor, a protected tiger landscape of c. 3,000 km2 was established in west-central Nepal and northern India.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Are corridors good for tigers Panthera tigris but bad for people? An assessment of the Khata corridor in lowland Nepal
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Are corridors good for tigers Panthera tigris but bad for people? An assessment of the Khata corridor in lowland Nepal
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Are corridors good for tigers Panthera tigris but bad for people? An assessment of the Khata corridor in lowland Nepal
      Available formats
      ×
Copyright
Corresponding author
(Corresponding author) E-mail per.wegge@nmbu.no
Footnotes
Hide All

This paper contains supplementary material that can be found online at https://doi.org/10.1017/S0030605316000661

Footnotes
References
Hide All
Ackerman, B.B., Lindzey, F.G. & Hemker, T.P. (1984) Cougar food habits in southern Utah. The Journal of Wildlife Management, 48, 147155.
Athreya, V., Navya, R., Punjabi, G.A., Linnell, J.D.C., Odden, M., Khetarpal, S. & Karanth, K.U. (2014) Movement and activity pattern of a collared tigress in a human-dominated landscape in central India. Tropical Conservation Science, 7, 7586.
Bhattarai, B.R. & Fischer, K. (2014) Human–tiger Panthera tigris conflict and its perception in Bardia National Park, Nepal. Oryx, 48, 522528.
Biswas, S. & Sankar, K. (2002) Prey abundance and food habit of tigers (Panthera tigris tigris) in Pench National Park, Madhya Pradesh, India. Journal of Zoology, 256, 411420.
Bolton, M. (1976) Royal Karnali Wildlife Reserve Managment Plan, 1976–1981. FAO/NEP/Project document 72/002. FAO, Rome, Italy.
Buckland, S.T., Anderson, D.R., Burnham, K.P., Laake, J.L., Borchers, D.L. & Thomas, L. (2001) Introduction to Distance Sampling. Oxford University Press, Oxford, UK.
Carbone, C., Christie, S., Conforti, K., Coulson, T., Franklin, N., Ginsberg, J.R. et al. (2001) The use of photographic rates to estimate densities of tigers and other cryptic mammals. Animal Conservation, 4, 7579.
Chanchani, P., Lamichhane, B.R., Malla, S., Maurya, K., Bista, A., Warrier, R. et al. (2014) Tigers of the Transboundary Terai Arc Landscape: Status, Distribution and Movement in the Terai of India and Nepal. National Tiger Conservation Authority, Government of India, and the Department of National Parks and Wildlife Conservation, Government of Nepal.
Ciucci, P., Tosoni, E. & Boitani, L. (2004) Assessment of the point-frame method to quantify wolf Canis lupus diet by scat analysis. Wildlife Biology, 10, 149153.
Dhakal, M., Karki, M., Jnawali, S.R., Subedi, N., Pradhan, N.M.B., Malla, S. et al. (2014) Status of Tigers and Prey in Nepal. Department of National Parks and Wildlife Conservation, Kathmandu, Nepal.
Dinerstein, E. (1979) An ecological survey of the Royal Karnali-Bardia Wildlife Reserve, Nepal. Part I: vegetation, modifying factors, and successional relationships. Biological Conservation, 15, 127150.
Dinerstein, E., Loucks, C., Heydlauff, A., Wikramanayake, E., Bryja, G., Forrest, J. et al. (2006) Setting Priorities for the Conservation and Recovery of Wild Tigers: 2005–20015. A User's Guide. WWF, WCS, Smithsonian & NFWF-STF, Washington, DC & New York, USA.
Dinerstein, E., Varma, K., Wikramanayake, E., Powell, G., Lumpkin, S., Naidoo, R. et al. (2013) Enhancing conservation, ecosystem services, and local livelihoods through a wildlife premium mechanism. Conservation Biology, 27, 1423.
Farrell, L.E., Roman, J. & Sunquist, M.E. (2000) Dietary separation of sympatric carnivores identified by molecular analysis of scats. Molecular Ecology, 9, 15831590.
Goodrich, J.M. (2010) Human–tiger conflict: a review and call for comprehensive plans. Integrative Zoology, 5, 300312.
Gopalaswamy, A.M., Royle, J.A., Hines, J.E., Singh, P., Jathanna, D., Kumar, N.S. & Karanth, K.U. (2012) Program SPACECAP: software for estimating animal density using spatially explicit capture–recapture models. Methods in Ecology and Evolution, 3, 10671072.
GTRP (Global Tiger Recovery Program) (2010) The St. Petersburg Declaration on Tiger Conservation. Http://www.globaltigerinitiative.org/download/St_Petersburg/St_Petersburg_Declaration_English.pdf [accessed 4 August 2016].
Gurung, B., Smith, J.L.D., McDougal, C., Karki, J.B. & Barlow, A. (2008) Factors associated with human-killing tigers in Chitwan National Park, Nepal. Biological Conservation, 141, 30693078.
Harihar, A. & Pandav, B. (2012) Influence of connectivity, wild prey and disturbance on occupancy of tigers in the human-dominated western Terai Arc Landscape. PLoS ONE, 7(7), e40105.
Inskip, C. & Zimmermann, A. (2009) Human–felid conflict: a review of patterns and priorities worldwide. Oryx, 43, 1834.
Jack, B.K., Kousky, C. & Sims, K.R.E. (2008) Designing payments for ecosystem services: lessons from previous experience with incentive-based mechanisms. PNAS, 105, 94659470.
Jhala, Y.V., Quereshi, Q., Gopal, R. & Sinha, P.R. (eds) (2011) Status of Tigers, Co-predators and Prey in India, 2010. Technical Report. National Tiger Conservation Authority, Government of India, New Delhi, and Wildlife Institute of India, Dehradun, India.
Jnawali, S.R. (1995) Population ecology of greater one-horned rhinoceros (Rhinoceros unicornis) with particular emphasis on habitat preference, food ecology and ranging behaviour of a reintroduced population in Royal Bardia National Park in lowland Nepal. PhD thesis. Agricultural University of Norway, Ås, Norway.
Joshi, A., Vaidyanathan, S., Mondol, S., Edgaonkar, A. & Ramakhrishnan, U. (2013) Connectivity of tiger (Panthera tigris) populations in the human-influenced forest mosaic of central India. PLoS ONE, 8(11), e77980.
Karanth, K.K. & Nepal, S.K. (2012) Local residents’ perception of benefits and losses from protected areas in India and Nepal. Environmental Management, 49, 372386.
Karanth, K.U. (1995) Estimating tiger Panthera tigris populations from camera-trap data using capture–recapture models. Biological Conservation, 71, 333338.
Karanth, K.U. & Nichols, J.D. (1998) Estimation of tiger densities in India using photographic captures and recaptures. Ecology, 79, 28522862.
Karanth, K.U. & Stith, B.M. (1999) Prey depletion as a critical determinant of tiger population viability. In Riding the Tiger: Tiger Conservation in Human-Dominated Landscapes (eds Seidensticker, J., Christie, S. & Jackson, P.), pp. 100113. Cambridge University Press, Cambridge, UK.
Karanth, K.U. & Sunquist, M.E. (1995) Prey selection by tiger, leopard and dhole in tropical forests. Journal of Animal Ecology, 64, 439450.
Kenney, J., Allendorf, F.W., McDougal, C. & Smith, J.L.D. (2014) How much gene flow is needed to avoid inbreeding depression in wild tiger populations? Proceedings of the Royal Society of London B: Biological Sciences, 281, 20133337.
Link, W.A. & Karanth, K.U. (1994) Correcting for overdispersion in tests of prey selectivity. Ecology, 75, 24562459.
Mukherjee, S., Goyal, S.P. & Chellam, R. (1994) Standardisation of scat analysis techniques for leopard Panthera pardus in Gir National Park, Western India. Mammalia, 58, 139144.
Nowell, K. & Jackson, P. (1996) Wild Cats: Status Survey and Conservation Action Plan. IUCN, Gland, Switzerland.
Otis, D.L., Burnham, K.P., White, G.C. & Anderson, D.R. (1978) Statistical inference from capture data on closed animal populations. Wildlife Monographs, 62, 1135.
R Development Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Ramakrishnan, U., Coss, R.G. & Pelkey, N.W. (1999) Tiger decline caused by the reduction of large ungulate prey: evidence from a study of leopard diets in southern India. Biological Conservation, 89, 113120.
Rathore, C.S., Dubey, Y., Shrivastava, A., Pathak, P. & Patil, V. (2012) Opportunities of habitat connectivity for tiger (Panthera tigris) between Kanha and Pench National Parks in Madhya Pradesh, India. PLoS ONE, 7(7), e39996.
Royle, J.A., Nichols, J.D., Karanth, K.U. & Gopalaswamy, A.M. (2009) A hierarchical model for estimating density in camera-trap studies. Journal of Applied Ecology, 46, 118127.
Saberwal, V.K., Gibbs, J.P., Chellam, R. & Johnsingh, A.J.T. (1994) Lion–human conflict in the Gir forest, India. Conservation Biology, 8, 501507.
Sharma, S., Dutta, T., Maldonado, J.E., Wood, T.C., Panwar, H.S. & Seidensticker, J. (2013a) Forest corridors maintain historical gene flow in a tiger metapopulation in the highlands of central India. Proceedings of the Royal Society of London B: Biological Sciences, 280, 20131506.
Sharma, S., Dutta, T., Maldonado, J.E., Wood, T.C., Panwar, H.S. & Seidensticker, J. (2013b) Spatial genetic analysis reveals high connectivity of tiger (Panthera tigris) populations in the Satpura–Maikal landscape of Central India. Ecology and Evolution, 3, 4860.
Simberloff, D., Farr, J.A., Cox, J. & Mehlman, D.W. (1992) Movement corridors: conservation bargains or poor investments? Conservation Biology, 6, 493504.
Smith, J.L.D., Ahearn, S.C. & McDougal, C. (1998) Landscape analysis of tiger distribution and habitat quality in Nepal. Conservation Biology, 12, 13381346.
Sunquist, M.E. (1981) The social organization of tigers in Royal Chitawan National Park, Nepal. Smithsonian Contributions to Zoology, 336, 198.
Suryawanshi, K.R., Bhatnagar, Y.V., Redpath, S. & Mishra, C. (2013) People, predators and perceptions: patterns of livestock depredation by snow leopards and wolves. Journal of Applied. Ecology, 50, 550560.
Thomas, L., Buckland, S.T., Rexstad, E.A., Laake, J.L., Strindberg, S., Hedley, S.L. et al. (2010) Distance software: design and analysis of distance sampling surveys for estimating population size. Journal of Applied Ecology, 47, 514.
Thomas, L., Laake, J.L., Rextad, E., Strindberg, S., Marques, F.F.C., Buckland, S.T. et al. (2009) Distance 6.0. Release 2. University of St. Andrews, UK.
Treves, A. & Karanth, K.U. (2003) Human–carnivore conflict and perspectives on carnivore management worldwide. Conservation Biology, 17, 14911499.
Wegge, P., Odden, M., Pokharel, C.P. & Storaas, T. (2009) Predator–prey relationships and responses of ungulates and their predators to the establishment of protected areas: a case study of tigers, leopards and their prey in Bardia National Park, Nepal. Biological Conservation, 142, 189202.
Wegge, P., Pokharel, C.P. & Jnawali, S.R. (2004) Effects of trapping effort and trap shyness on estimates of tiger abundance from camera trap studies. Animal Conservation, 7, 251256.
Wegge, P., Shrestha, R. & Flagstad, Ø. (2012) Snow leopard Panthera uncia predation on livestock and wild prey in a mountain valley in northern Nepal: implications for conservation management. Wildlife Biology, 18, 131141.
Wegge, P. & Storaas, T. (2009) Sampling tiger ungulate prey by the distance method: lessons learned in Bardia National Park, Nepal. Animal Conservation, 12, 7884.
White, G.C., Burnham, K.P., Otis, D.L. & Anderson, D.R. (1978) Users’ Manual for Program CAPTURE. Utah State University Press, Utah, USA.
Wikramanayake, E., Dinerstein, E., Robinson, J.G., Karanth, K.U., Rabinowitz, A., Olson, D. et al. (1998) An ecology-based method for defining priorities for large mammal conservation: the tiger as case study. Conservation Biology, 12, 865878.
Wikramanayake, E., McKnight, M., Dinerstein, E., Joshi, A., Gurung, B. & Smith, D. (2004) Designing a conservation landscape for tigers in human-dominated environments. Conservation Biology, 18, 839844.
Woodroffe, R., Thirgood, S. & Rabinowitz, A. (eds) (2005) People and Wildlife: Conflict or Coexistence? Cambridge University Press, Cambridge, UK.
Yumnam, B., Jhala, Y.V., Quereshi, Q., Maldonado, J.E., Gopal, R., Saini, S. et al. (2014) Prioritizing tiger conservation through landscape genetics and habitat linkages. PLoS ONE, 9(11), e111207.
Zar, J.H. (1984) Biostatistical Analysis. Prentice Hall, Upper Saddle River, USA.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Oryx
  • ISSN: 0030-6053
  • EISSN: 1365-3008
  • URL: /core/journals/oryx
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
PDF
Supplementary materials

Wegge supplementary material
Wegge supplementary material 1

 PDF (253 KB)
253 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed