Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-16T17:59:13.064Z Has data issue: false hasContentIssue false

Diversity and species abundance patterns of the Early Cambrian (Series 2, Stage 3) Chengjiang Biota from China

Published online by Cambridge University Press:  08 April 2016

Fangchen Zhao
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China. E-mail: fczhao@nigpas.ac.cn; myzhu@nigpas.ac.cn
Jean-Bernard Caron
Affiliation:
Department of Natural History-Palaeobiology, Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario M5S 2C6, Canada. E-mail: jcaron@rom.on.ca
David J. Bottjer
Affiliation:
Department of Earth Sciences, University of Southern California, Los Angeles, California 90089, U.S.A. E-mail: dbottjer@usc.edu
Shixue Hu
Affiliation:
Chengdu Institute of Geology and Mineral Resources, Chengdu Center of China Geological Survey, Chengdu 610081, China
Zongjun Yin
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China. E-mail: fczhao@nigpas.ac.cn; myzhu@nigpas.ac.cn
Maoyan Zhu
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China. E-mail: fczhao@nigpas.ac.cn; myzhu@nigpas.ac.cn

Abstract

Lagerstätten from the Precambrian–Cambrian transition have traditionally been a relatively untapped resource for understanding the paleoecology of the “Cambrian explosion.” This quantitative paleoecological study is based on 10,238 fossil specimens belonging to 100 animal species, 11 phyla, and 15 ecological categories from the lower Cambrian (Series 2, Stage 3) Chengjiang biota (Mafang locality near Haikou, Yunnan Province, China). Fossils were systematically collected within a 2.5-meter-thick sequence divided into ten stratigraphic intervals. Each interval represents an induced time-averaged assemblage of various event (obrution) beds of unknown duration. Overall, the different fossil assemblages are taxonomically and ecologically similar, suggesting the presence of a single community type recurring throughout the Mafang section. The Mafang community is dominated by epibenthic vagile hunters or scavengers, sessile suspension feeders, and infaunal vagile hunters or scavengers represented primarily by arthropods, brachiopods, and priapulids, respectively. Most species have low abundance and low occurrence frequencies, whereas a few species are numerically abundant and occur frequently. Overall, in structure and ecology the Mafang community is comparable to the Middle Cambrian (Series 3, Stage 5) Burgess Shale biota (Walcott Quarry, Yoho National Park, British Columbia, Canada). This suggests that, despite variations in species identity within taxonomic and ecological groups, the structure and ecology of Cambrian Burgess Shale-type communities remained relatively stable until at least the Middle Cambrian (Series 3, Stage 5) in subtidal to relatively deep-water offshore settings in siliciclastic soft-substrate environments.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J. 2010a. Fair sampling of taxonomic richness and unbiased estimation of origination and extinction rates. InAlroy, J. and Hunt, G., eds. Quantitative methods in paleobiology. Paleontological Society Papers 16:5580.Google Scholar
Alroy, J. 2010b. The shifting balance of diversity among major marine animal groups. Science 329:11911194.Google Scholar
Bergström, J., Hou, X. G., and Halenius, U. 2007. Gut contents and feeding in the Cambrian arthropod Naraoia. GFF 129:7176.Google Scholar
Briggs, D. E. G., Erwin, D. H., and Collier, F. J. 1994. The fossils of the Burgess Shale. Smithsonian Institution Press, Washington, D.C.Google Scholar
Bush, A. M., and Brame, R. I. 2010. Multiple paleoecological controls on the composition of marine fossil assemblages from the Frasnian (Late Devonian) of Virginia, with a comparison of ordination methods. Paleobiology 36:573591.Google Scholar
Caron, J.-B., and Jackson, D. A. 2006. Taphonomy of the Greater Phyllopod Bed community, Burgess Shale. Palaios 21:451465.Google Scholar
Caron, J.-B., and Jackson, D. A. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology 258:222256.CrossRefGoogle Scholar
Caron, J.-B., Conway Morris, S., and Cameron, C. B. 2013. Tubicolous enteropneusts from the Cambrian period. Nature 495:503506.Google Scholar
Chao, A., and Jost, L. 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93:25332547.Google Scholar
Chen, J. Y. 2004. The dawn of animal world. Jiangsu Science and Technology Press, Nanjing.Google Scholar
Chen, J. Y. 2009. The sudden appearance of diverse animal body plans during the Cambrian explosion. International Journal of Developmental Biology 53:733751.Google Scholar
Chen, J. Y., Zhou, G. Q., Zhu, M. Y., and Yeh, K. Y. 1996. The Chengjiang biota—a unique window on the Cambrian explosion. National Museum of Natural Science, Taichung, Taiwan.Google Scholar
Clausen, S., Hou, X. G., Bergström, J., and Franzén, C. 2010. The absence of echinoderms from the lower Cambrian Chengjiang fauna of China: palaeoecological and palaeogeographical implications. Palaeogeography, Palaeoclimatology, Palaeoecology 294:133141.Google Scholar
Colwell, R. K. 2006. EstimateS: statistical estimation of species richness and shared species from samples, Version 8.0, User's guide and application. http://viceroy.eeb.uconn.edu/EstimateS/.Google Scholar
Conway Morris, S. 1986. The community structure of the Middle Cambrian Phyllopod bed (Burgess Shale). Palaeontology 29:423467.Google Scholar
Conway Morris, S. 2008. A redescription of a rare chordate, Metaspriggina walcotti Simonetta and Insom, from the Burgess Shale (Middle Cambrian), British Columbia, Canada. Journal of Paleontology 82:424430.CrossRefGoogle Scholar
Conway Morris, S., and Caron, J.-B. 2012. Pikaia gracilens Walcott, a stem-group chordate from the Middle Cambrian of British Columbia. Biological Reviews 87:480512.CrossRefGoogle Scholar
Conway Morris, S., and Peel, J. S. 2008. The earliest annelids: Lower Cambrian polychaetes from the Sirius Passet Lagerstätte, Peary Land, North Greenland. Acta Palaeontologica Polonica 53:137148.Google Scholar
Dornbos, S. Q., and Chen, J. Y. 2008. Community palaeoecology of the Early Cambrian Maotianshan Shale biota: ecological dominance of priapulid worms. Palaeogeography, Palaeoclimatology, Palaeoecology 258:200212.Google Scholar
Dunne, J. A., Williams, R. J., Martinez, N. D., Wood, R. A., and Erwin, D. H. 2008. Compilation and network analyses of Cambrian food webs. PLoS Biology 6:06930708.Google Scholar
Erwin, D. H., Laflamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D., and Peterson, K. J. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334:10911097.Google Scholar
Gotelli, N. J., and Entsminger, G. L. 2001. EcoSim: null models software for ecology, Version 7.0. Acquired Intelligence Inc. and Kesey-Bear. http://www.garyentsminger.com.Google Scholar
Hammer, Ø., Harper, D. A. T., and Ryan, P. D. 2001. PAST: palaeontological statistics package for education and data analysis. Palaeontologica Electronica 4, 1. http://palaeo-electronica.org/2001_1/past/issue1_01.htm.Google Scholar
Han, J., Shu, D., Zhang, Z., Liu, J., Zhang, X., and Yao, Y. 2006. Preliminary notes on soft-bodied fossil concentrations from the Early Cambrian Chengjiang deposits. Chinese Science Bulletin 51:24822492.Google Scholar
Haug, J., Caron, J.-B., and Haug, C. 2013. Demecology in the Cambrian—synchronized molting in arthropods from the Burgess Shale. BMC Biology 11:64. doi: 10.1186/1741-7007-11-64.Google Scholar
Hentschel, B. T. 1998. Intraspecific variations in δ13C indicate ontogenetic diet changes in deposit-feeding polychaetes. Ecology 79:13571370.Google Scholar
Hou, X. G., Aldridge, R. J., Bergström, J., Siveter, D. J., Siveter, D. J., and Feng, X. H. 2004. The Cambrian fossils of Chengjiang, China: the flowering of early animal life. Blackwell Publishing, Oxford.Google Scholar
Hou, X. G., Siveter, D. J., Aldridge, R. J., and Siveter, D. J. 2008. Collective behavior in an early Cambrian arthropod. Science 322:224.Google Scholar
Hou, X. G., Siveter, D. J., Aldridge, R. J., and Siveter, D. J. 2009. A new arthropod in chain-like associations from the Chengjiang Lagerstätte (Lower Cambrian), Yunnan, China. Palaeontology 52:951961.Google Scholar
Hou, X. G., Aldridge, R. J., Siveter, D. J., Siveter, D. J., Williams, M., Zalasiewicz, J., and Ma, X. Y. 2011. An Early Cambrian hemichordate zooid. Current Biology 21:612616.Google Scholar
Hu, S. X. 2005. Taphonomy and palaeoecology of the Early Cambrian Chengjiang biota from Eastern Yunnan, China. Berliner Paläobiologische Abhandlungen 7:1197.Google Scholar
Hu, S. X., Steiner, M., Zhu, M. Y., Erdtmann, B. -D., Luo, H. L., Chen, L. Z., and Weber, B. 2007. Diverse pelagic predators from the Chengjiang Lagerstätte and the establishment of modern-style pelagic ecosystems in the early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology 254:307316.Google Scholar
Hurlbert, S. H. 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577589.Google Scholar
Kidwell, S. M. 2013. Time-averaging and fidelity of modern death assemblages: building a taphonomic foundation for conservation palaeobiology. Palaeontology 56:487522.Google Scholar
Luo, H. L., Hu, S. X., Zhang, S. S., and Tao, Y. H. 1997. New occurrence of the Early Cambrian Chengjiang fauna in Haikou, Kunming, Yunnan Province, and study on Trilobitoidea. Acta Geologica Sinica 71:122132.Google Scholar
Magurran, A. E. 2004. Measuring biological diversity. Blackwell Publishing, Oxford.Google Scholar
McAleece, N. 1999. BioDiversity Pro, Version 2.00. The Natural History Museum and the Scottish Association for Marine Science. http://www.sams.ac.uk/research/software.Google Scholar
Olszewski, T. D. 2004. A unified mathematical framework for the measurement of richness and evenness within and among multiple communities. Oikos 104:277287.CrossRefGoogle Scholar
Peters, S. E. 2004. Evenness of Cambrian–Ordovician benthic marine communities in North America. Paleobiology 30:325346.Google Scholar
Shu, D. G. 2008. Cambrian explosion: birth of tree of animals. Gondwana Research 14:219240.Google Scholar
Shu, D. G., Luo, H. L., Conway Morris, S., Zhang, X. L., Hu, S. X., Chen, L., Han, J., Zhu, M., Li, Y., and Chen, L. Z. 1999. Early Cambrian vertebrates from South China. Nature 402:4246.Google Scholar
Shu, D. G., Conway Morris, S., Han, J., Zhang, Z. F., Yasui, K., Janvier, P., Chen, L., Zhang, X. L., Liu, J. N., Li, Y., and Liu, H. Q. 2003. Head and backbone of the Early Cambrian vertebrate Haikouichthys. Nature 421:526529.Google Scholar
Shu, D. G., Conway Morris, S., Han, J., Zhang, Z. F., and Liu, J. N. 2004. Ancestral echinoderms from the Chengjiang deposits of China. Nature 430:422427.Google Scholar
Steiner, M., Zhu, M. Y., Zhao, Y. L., and Erdtmann, B.-D. 2005. Lower Cambrian Burgess Shale-type fossil associations of South China. Palaeogeography, Palaeoclimatology, Palaeoecology 220:129152.Google Scholar
Stirling, G., and Wilsey, B. 2001. Empirical relationships between species richness, evenness, and proportional diversity. American Naturalist 158:286–99.Google Scholar
Vannier, J., and Chen, J. Y. 2002. Digestive system and feeding mode in Cambrian naraoiid arthropods. Lethaia 35:107120.Google Scholar
Zhang, X. G., Hou, X. G., and Bergström, J. 2006. Early Cambrian priapulid worms buried with their lined burrows. Geological Magazine 143:743748.Google Scholar
Zhao, F. C., Caron, J. -B., Hu, S. X., and Zhu, M. Y. 2009. Quantitative analysis of taphofacies and paleocommunities in the Early Cambrian Chengjiang Lagerstätte. Palaios 24:826839.Google Scholar
Zhao, F. C., Zhu, M. Y., and Hu, S. X. 2010. Community structure and composition of the Cambrian Chengjiang biota. Science China (Earth Science) 53:17841799.Google Scholar
Zhao, F. C., Hu, S. X., Caron, J.-B., Zhu, M. Y., Yin, Z. J., and Lu, M. 2012. Spatial variation in the diversity and composition of the Lower Cambrian (Series 2, Stage 3) Chengjiang biota, Southwest China. Palaeogeography. Palaeoclimatology. Palaeoecology 346–347:5465.Google Scholar