Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-17T19:22:42.775Z Has data issue: false hasContentIssue false

Ecological conservatism in the “living fossil” Ginkgo

Published online by Cambridge University Press:  08 April 2016

Dana L. Royer
Affiliation:
Department of Geology and Geophysics, Yale University, New Haven, Connecticut 06520-8109
Leo J. Hickey
Affiliation:
Department of Geology and Geophysics, Yale University, New Haven, Connecticut 06520-8109
Scott L. Wing
Affiliation:
National Museum of Natural History, Department of Paleobiology, Smithsonian Institution, Washington, D.C. 20560

Abstract

The living species Ginkgo biloba is phylogenetically isolated, has a relictual distribution, and is morphologically very similar to Mesozoic and Cenozoic congenerics. To investigate what adaptations may have allowed this lineage to persist with little or no morphological change for over 100 Myr, we analyzed both sedimentological and floral data from 51 latest Cretaceous to middle Miocene Ginkgo-bearing fossil plant sites in North America and northern Europe. The resulting data indicate that throughout the late Cretaceous and Cenozoic Ginkgo was largely confined to disturbed streamside and levee environments, where it occurred with a consistent set of other plants. These inferred habitats are surprising because the life-history traits of Ginkgo (e.g., slow growth rate, late reproductive maturity, extended reproductive cycle, large and complex seeds, large and slowly developing embryos) are counter to those considered advantageous in modern disturbed habitats. Many flowering plant lineages first appeared or became common in disturbed riparian habitats, and are inferred to have had reproductive and growth traits (e.g., rapid reproduction, small easily dispersed seeds, rapid growth) suited to such habitats. Paleoecological inferences based on both morphology and sedimentary environments thus support the idea that Ginkgo was displaced in riparian habitats by angiosperms with better adaptations to frequent disturbance.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ahn, Y.-J., Kwon, M., Park, H. M., and Han, C. K. 1997. Potent insecticidal activity of Ginkgo biloba derived trilactone terpenes against Nilaparvata lugens. Phytochemicals for Pest Control 658:90105.CrossRefGoogle Scholar
Allen, J. R. L. 1964. Studies in fluviatile sedimentation: six cyclothems from the lower Old Red Sandstone, Anglo-Welsh Basin. Sedimentology 3:164198.Google Scholar
Allen, J. R. L. 1965. A review of the origins and characteristics of Recent alluvial sediments. Sedimentology 5:8991.CrossRefGoogle Scholar
Arnold, C. A. 1947. An introduction to paleobotany. McGraw, New York.Google Scholar
Atzmon, N., and Henkin, Z. 1998. Establishing forest tree species on peatland in a reflooded area of the Huleh Valley, Israel. Forestry 71:141146.Google Scholar
Bell, D. T. 1980. Gradient trends in the streamside forest of central Illinois. Bulletin of the Torrey Botanical Club 107:172180.Google Scholar
Boivin, R., Richard, M., Beauseigle, D., Bousquet, J., and Bellemare, G. 1996. Phylogenetic inferences from chloroplast chIB gene sequences of Nephrolepis exaltata (Filicopsida), Ephedra altissima (Gnetopsida), and diverse land plants. Molecular Phylogenetics and Evolution 6:1929.Google Scholar
Bond, W. J. 1989. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biological Journal of the Linnean Society 36:227249.Google Scholar
Boulter, M. C., and Kvaček, Z. 1989. The Palaeocene flora of the Isle of Mull. Special Papers in Palaeontology 42:1149. Palaeontological Association, London.Google Scholar
Burnham, R. J. 1988. Paleoecological approaches to analyzing stratigraphic sequences. Pp. 105125in DiMichele, W. A., and Wing, S. L., eds. Methods and applications of plant paleoecology. Paleontological Society Special Publication No. 3, Knoxville, Tenn.Google Scholar
Burnham, R. J. 1994. Paleoecological and floristic heterogeneity in the plant fossil record: an analysis based on the Eocene of Washington. U.S. Geological Survey Bulletin 2085B:136.Google Scholar
Carr, C. J. 1998. Patterns of vegetation along the Omo River in southwest Ethiopia. Plant Ecology 135:135163.Google Scholar
Chamberlain, C. J. 1935. Gymnosperms: structure and evolution. University of Chicago Press, Chicago.Google Scholar
Chaney, R. W. 1951. A revision of fossil Sequoia and Taxodium in western North America based on the recent discovery of Metasequoia. Transactions of the American Philosophical Society 40:171263.Google Scholar
Chaw, S. M., Long, H., Wang, B. S., Zharkikh, A., and Li, W. H. 1993. The phylogenetic position of Taxaceae based on 18S ribosomal-RNA sequences. Journal of Molecular Evolution 37:624630.Google Scholar
Chaw, S. M., Zharkikh, A., Sung, H. M., Lau, T. C., and Li, W. H. 1997. Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences. Molecular Biology and Evolution 14:5668.Google Scholar
Christensen, T. G., and Sproston, T. 1972. Phytoalexin production in Ginkgo biloba in relation to inhibition of fungal penetration. Phytopathology 62:493494.Google Scholar
Christophel, D. C. 1976. Fossil floras of the Smoky Tower locality, Alberta, Canada. Palaeontographica, Abteilung B 157:143.Google Scholar
Chu, K.-L., and Cooper, W. S. 1950. An ecological reconnaissance in the native home of Metasequoia glyptostroboides. Ecology 31:260278.CrossRefGoogle Scholar
Coley, P. D., Bryant, J. P., and Chapin, F. S. 1985. Resource availability and plant antiherbivore defense. Science 230:895899.Google Scholar
Crane, P. R. 1985. Phylogenetic analysis of seed plants and the origin of angiosperms. Annals of the Missouri Botanical Garden 72:716793.Google Scholar
Crane, P. R., Manchester, S. R., and Dilcher, D. L. 1990. A preliminary survey of fossil leaves and well-preserved reproductive structures from the Sentinel Butte Formation (Paleocene) near Almont, North Dakota. Fieldiana (Geology) 20:163.Google Scholar
Del Tredici, P. 1989. Ginkgos and multituberculates: evolutionary interactions in the Tertiary. BioSystems 22:327339.Google Scholar
Del Tredici, P. 1992. Natural regeneration of Ginkgo biloba from down ward growing cotyledonary buds (basal chichi). American Journal of Botany 79:522530.Google Scholar
Del Tredici, P., Ling, H., and Yang, G. 1992. The Ginkgos of Tian Mu Shan. Conservation Biology 6:202209.Google Scholar
Doyle, J. A., and Donoghue, M. J. 1986. Seed plant phylogeny and origin of angiosperms: an experimental cladistic approach. Botanical Review 52:321431.Google Scholar
Doyle, J. A., and Donoghue, M. J. 1987. The origin of angiosperms: a cladistic approach. Pp. 1749in Friis, E. M., Chaloner, W. G., and Crane, P. R., eds. The origins of angiosperms and their biological consequences. Cambridge University Press, Cambridge.Google Scholar
Doyle, J. A., and Hickey, L. J. 1976. Pollen and leaves from the mid-Cretaceous Potomac Group and their bearing on early angiosperm evolution. Pp. 139206in Beck, C. B., ed. Origin and early evolution of angiosperms. Columbia University Press, New York.Google Scholar
Eriksson, O. 1993. Dynamics of genets in clonal plants. Trends in Ecology and Evolution 8:313316.Google Scholar
Eriksson, O., and Bremer, B. 1992. Pollination systems, dispersal modes, life forms, and diversification rates in angiosperm families. Evolution 46:258266.Google Scholar
Everitt, B. L. 1968. Use of cottonwood in an investigation of the recent history of a flood plain. American Journal of Science 266:417439.Google Scholar
Everson, D. A., and Boucher, D. H. 1998. Tree species-richness and topographic complexity along the riparian edge of the Potomac River. Forest Ecology and Management 109:305314.Google Scholar
Falcon-Lang, H. J., Cantrill, D. J., and Nichols, G. J. 2001. Biodiversity and terrestrial ecology of a mid-Cretaceous, high-latitude floodplain, Alexander Island, Antarctica. Journal of the Geological Society, London 158:709724.Google Scholar
Falder, A. B., Stockey, R. A., and Rothwell, G. W. 1999. In situ fossil seedlings of a Metasequoia-like taxodiaceous conifer from Paleocene river floodplain deposits of central Alberta, Canada. American Journal of Botany 86:900902.CrossRefGoogle ScholarPubMed
Fox, R. C. 1990. The succession of Paleocene mammals in western Canada. In Bown, T. M. and Rose, K. D., eds. Dawn of the age of mammals in the northern part of the Rocky Mountain interior, North America. Geological Society of America Special Publication 243:5170.Google Scholar
Franklin, A. H. 1959. Ginkgo biloba L: historical summary and bibliography. Virginia Journal of Science 10:131176.Google Scholar
Fujii, K. 1895. On the nature and origin of so-called “chichi” (nipple) of Ginkgo biloba L. Botanical Magazine (Tokyo) 9:444450.Google Scholar
Gastaldo, R. A., Bearce, S. C., Degges, C. W., Hunt, R. J., Peebles, M. W., and Violette, D. L. 1989. Biostratinomy of a Holocene oxbow lake: a backswamp to mid-channel transect. Review of Palaeobotany and Palynology 58:4759.Google Scholar
Gifford, E. M., and Foster, A. S. 1989. Morphology and evolution of vascular plants. W. H. Freeman, New York.Google Scholar
Gingerich, P. D. 2000. Paleocene/Eocene boundary and continental vertebrate faunas of Europe and North America. GFF 122:5759.Google Scholar
Grime, J. P. 2001. Plant strategies, vegetation processes, and ecosystem processes (second edition). Wiley, Chichester, England.Google Scholar
Hack, J. T., and Goodlett, J. C. 1960. Geomorphology and forest ecology of a mountain region in the central Appalachians. U.S. Geological Survey Professional Paper 347:166.Google Scholar
Handa, M., Iizuka, Y., and Fujiwara, N. 1997. Ginkgo landscapes. Pp. 259283in Hori, et al. 1997.Google Scholar
Harper, J. L., Lovell, P. H., and Moore, K. G. 1970. The shapes and sizes of seeds. Annual Review of Ecology and Systematics 1:327356.Google Scholar
Hasebe, M. 1997. Molecular phylogeny of Ginkgo biloba: close relationships between Ginkgo biloba and cycads. Pp. 173181in Hori, et al. 1997.Google Scholar
He, S.-A., Yin, G., and Pang, Z.-J. 1997. Resources and prospects of Ginkgo biloba in China. Pp. 373383in Hori, et al. 1997.Google Scholar
Hickey, L. J. 1977. Stratigraphy and paleobotany of the Golden Valley Formation (early Tertiary) of western North Dakota. Geological Society of America Memoir 150.Google Scholar
Hickey, L. J. 1980. Paleocene stratigraphy and flora of the Clark's Fork Basin. In Gingerich, P. D., ed. Early Cenozoic paleontology and stratigraphy of the Bighorn Basin, Wyoming. University of Michigan Museum of Paleontology Papers on Paleontology 24:3349.Google Scholar
Hickey, L. J. 1996. A new proposal for seed plant phylogeny. Abstract volume of the fifth quadrenniial conference of the International Organization of Palaeobotany, Santa Barbara, California, 30 June–5 July 1996, p. 43.Google Scholar
Hickey, L. J., and Doyle, J. A. 1977. Early Cretaceous evidence for angiosperm evolution. Botanical Review 43:3105.Google Scholar
Hicks, J. F., Johnson, K. R., Obradovich, J. D., Tauxe, L., and Clark, D. 2002. Magnetostratigraphy and geochronology of the Hell Creek and basal Fort Union Formations of southwestern North Dakota and a recalibration of the Cretaceous-Tertiary boundary. In Hartman, J. H., Johnson, K. R., and Nichols, D. J., eds. The Hell Creek Formation and the Cretaceous-Tertiary boundary in the northern Great Plains: an integrated continental record of the end of the Cretaceous. Geological Society of American Special Paper 361:3556.CrossRefGoogle Scholar
Hoffman, G. L., and Stockey, R. A. 1999. Geological setting and paleobotany of the Joffre Bridge roadcut fossil locality (Late Paleocene), Red Deer Valley, Alberta. Canadian Journal of Earth Science 36:20732084.Google Scholar
Honda, H. 1997. Ginkgo and insects. Pp. 243250in Hori, et al. 1997.Google Scholar
Hori, T., Ridge, R. W., Tulecke, W., Del Tredici, P., Trémouillaux-Guiller, J., and Tobe, H., eds. 1997. Ginkgo biloba:a global treasure. Springer, Tokyo.Google Scholar
Hughes, N. F. 1976. Palaeobotany of angiosperm origins: problems of Mesozoic seed-plant evolution. Cambridge University Press, Cambridge.Google Scholar
Ishizuka, M., and Sugawara, S. 1989. Composition and structure of natural mixed forests in central Hokkaido. II. Effect of disturbances on the forest vegetation patterns along the topographic moisture gradients. Journal of the Japanese Forestry Society 71:8998.Google Scholar
Jiang, M. Y., Jin, Y., and Zhang, Q. 1990. A preliminary study on Ginkgo biloba in Dahongshan region, Hubei. Journal of Wuhan Botanical Research 8:191193. [In Chinese.]Google Scholar
Johnson, K. R. 2002. Megaflora of the Hell Creek and lower Fort Union Formations in the western Dakotas: Vegetational response to climate change, the Cretaceous-Tertiary boundary event, and rapid marine transgression. In Hartman, J. H., Johnson, K. R., and Nichols, D. J., eds. The Hell Creek Formation and the Cretaceous-Tertiary boundary in the northern Great Plains: an integrated continental record of the end of the Cretaceous. Geological Society of American Special Paper 361:329392.Google Scholar
Kalkreuth, W. D., Riediger, C. L., McIntyre, D. J., Richardson, R. J. H., Fowler, M. G., and Marchioni, D. 1996. Petrological, palynological and geochemical characteristics of Eureka Sound Group coals (Stenkul Fiord, southern Ellesmere Island, Arctic Canada). International Journal of Coal Geology 30:151182.Google Scholar
Kim, Y. S., and Lee, J. K. 1990. Chemical and structural characteristics of conifer needles exposed to ambient air pollution. European Journal of Forest Pathology 20:193200.CrossRefGoogle Scholar
Kim, Y. S., Lee, J. K., and Chung, G. C. 1997. Tolerance and susceptibility of Ginkgo to air pollution. Pp. 233242in Hori, et al. 1997.Google Scholar
Knoll, A. H. 1984. Patterns of extinction in the fossil record of vascular plants. Pp. 2168in Nitecki, M. H., ed. Extinctions. University of Chicago Press.Google Scholar
Kovar-Eder, J., Givulsecu, R., Hably, L., Kvaček, Z., Mihajlovic, D., Teslenko, J., Walther, H., and Zastawniak, E. 1994. Floristic changes in the areas surrounding the Paratethys during Neogene time. Pp. 347369in Boulter, M. C. and Fisher, H. C., eds. Cenozoic plants and climates of the Arctic. Springer, Berlin.Google Scholar
Kvaček, Z., Manum, S. B., and Boulter, M. C. 1994. Angiosperms from the Palaeogene of Spitsbergen, including an unfinished work by A. G. Nathorst. Palaeontographica, Abteilung B 232:103128.Google Scholar
Kwon, M., Ahn, Y.-J., Yoo, J.-K., and Choi, B.-R. 1996. Potent insecticidal activity of extracts from Ginkgo biloba leaves against Nilaparvata lugens (Homoptera: Delphacidae). Applied Entomology and Zoology 31:162166.Google Scholar
Li, H.-L. 1956. A horticultural and botanical history of Ginkgo. Morris Arboretum Bulletin 7:312.Google Scholar
Ligard, S., and Crane, P. R. 1990. Angiosperm diversification and Cretaceous floristic trends: a comparison of palynofloras and leaf macrofloras. Paleobiology 16:7793.Google Scholar
Liu, Y.-J., Li, C.-S., and Wang, Y.-F. 1999. Studies on fossil Metasequoia from north-east China and their taxonomic implications. Botanical Journal of the Linnean Society 130:267297.Google Scholar
Lupia, R., Lidgard, S., and Crane, P. R. 1999. Comparing palynological abundance and diversity: implications for biotic replacement during the Cretaceous angiosperm radiation. Paleobiology 25:305340.Google Scholar
Major, R. T. 1967. The Ginkgo, the most ancient living tree. Science 157:12701273.Google Scholar
Major, R. T., Marchini, P., and Sproston, T. 1960. Isolation from Ginkgo biloba L. of an inhibitor of fungus growth. Journal of Biological Chemistry 235:32983299.Google Scholar
Manum, S. 1963. Notes on the Cretaceous-Tertiary boundary in Basilikaen, Vestspitsbergen, and a new record of Ginkgo from the Spitsbergen Tertiary. Norsk Polarinstitutt-Årbok 1962:149152.Google Scholar
Manum, S. 1966. Ginkgo spitsbergensis n. sp. from the Paleocene of Spitsbergen and a discussion of certain Tertiary species of Ginkgo from Europe and North America. Norsk Polarinstitutt-Årbok 1965:4958.Google Scholar
Mastrogiuseppe, J. D., Cridland, A. A., and Bogyo, T. P. 1970. Multivariate comparison of fossil and Recent Ginkgo wood. Lethaia 3:271277.Google Scholar
Mazzanti, G., Mascellino, M. T., Battinelli, L., Coluccia, D., Manganaro, M., and Saso, L. 2000. Antimicrobial investigation of semipurified fractions of Ginkgo biloba leaves. Journal of Ethnopharmacology 71:8388.Google Scholar
McClain, W. E., Jenkins, M. A., Jenkins, S. E., and Ebinger, J. E. 1993. Changes in the woody vegetation of a bur oak savanna remnant in central Illinois. Natural Areas Journal 13:108114.Google Scholar
Meyen, S. V. 1984. Basic features of gymnosperm systematics and phylogeny as evidenced by the fossil record. Botanical Review 50:1111.Google Scholar
Meyen, S. V. 1987. Fundamentals of palaeobotany. Chapman and Hall, London.Google Scholar
Miall, A. D. 1992. Alluvial deposits. Pp. 119142in Walker, R. G. and James, N. P., eds. Facies models: response to sea level change. Geological Association of Canada, St. John's, Newfoundland.Google Scholar
Midgley, J. J., and Bond, W. J. 1989. Evidence from Southern African Coniferales for the historical decline of the gymnosperms. South African Journal of Science 85:8184.Google Scholar
Momohara, A. 1994. Paleoecology and Paleobiogeography of Metasequoia. Fossils 57:2430. [In Japanese.]Google Scholar
Mösle, B., Collinson, M. E., Finch, P., Stankiewicz, A., Scott, A. C., and Wilson, R. 1998. Factors influencing the preservation of plant cuticles: a comparison of morphology and chemical composition of modern and fossil examples. Organic Geochemistry 29:13691380.Google Scholar
Page, C. N. 1990. Cephalotaxaceae. Pp. 299302in Kramer, K. U. and Green, P. S., eds. The families and genera of vascular plants, Vol. I. Pteridophytes and gymnosperms. Springer, Berlin.Google Scholar
Pant, D. D. 1977. Early conifers and conifer allies. Journal of the Indian Botanical Society 56:2337.Google Scholar
Pelzer, G., Riegel, W., and Wilde, V. 1992. Depositional controls on the Lower Cretaceous Wealden coals of Northwest Germany. In Parrish, J. T. and McCabe, P. J., eds. Controls on the distribution and quality of Cretaceous coals. Geological Society of America Special Paper 267:227244.Google Scholar
Raubeson, L. A., and Jansen, R. K. 1992. Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science 255:16971699.Google Scholar
Raynolds, R. G. H., Johnson, K. R., Arnold, L. R., Farnham, T. M., Fleming, R. F., Hicks, J. F., Kelley, S. A., Lapey, L. A., Nichols, D. J., Obradovich, J. D., and Wilson, M. D. 2001. The Kiowa core, a continuous drill core through the Denver Basin bedrock aquifers at Kiowa, Elbert County, Colorado. U.S. Geological Survey Open-File Report 01–185. Boulder, Colo. (http://geology.cr.usgs.gov/pub/open-file-reports/ofr-01-0185/).Google Scholar
Reidel, S. P., and Fecht, K. R. 1986. The Huntziger flow: evidence of surface mixing of the Columbia River Basalt and its petrogenetic implications. Geological Society of America Bulletin 98:664677.Google Scholar
Rothwell, G. W., and Serbet, R. 1994. Lignophyte phylogeny and the evolution of spermatophytes—a numerical cladistic-analysis. Systematic Botany 19:443482.Google Scholar
Royer, D. L., Wing, S. L., Beerling, D. J., Jolley, D. W., Koch, P. L., Hickey, L. J., and Berner, R. A. 2001. Paleobotanical evidence for near present day levels of atmospheric CO2 during part of the Tertiary. Science 292:23102313.Google Scholar
Santamour, F. S., He, S., and Ewert, T. E. 1983. Growth, survival and sex expression in Ginkgo. Journal of Arboriculture 9:170171.Google Scholar
Scott, R. A., Barghoorn, E. S., and Prakash, U. 1962. Wood of Ginkgo in the Tertiary of western North America. American Journal of Botany 49:10951101.Google Scholar
Seiwa, K., and Kikuzwa, K. 1996. Importance of seed size for the establishment of seedlings of five deciduous broad-leaved tree species. Vegetatio 123:5164.Google Scholar
Seward, A. C. 1919. Fossil plants. IV. Ginkgoales, Coniferales, Gnetales. Cambridge University Press, Cambridge.Google Scholar
Shaparenko, K. 1935. Ginkgo adiantoides (Unger) Heer: contemporary and fossil forms. Philippine Journal of Science 57:128.Google Scholar
Sokal, R. R., and Rohlf, F. J. 1995. Biometry, 3d ed.W. H. Freeman, New York.Google Scholar
Speirs, B. 1982. Fossil collecting in Alberta, Canada. Fossils Quarterly 1(3):1016.Google Scholar
Spicer, R. A. 1980. The importance of depositional sorting to the biostratigraphy of plant megafossils. Pp. 171183in Dilcher, D. L. and Taylor, T. N., eds. Biostratigraphy of fossil plants. Dowden, Hutchinson, and Ross, Stroudsburg, Penn.Google Scholar
Spicer, R. A., and Herman, A. B. 2001. The Albian-Cenomanian flora of the Kukpowruk River, western North Slope, Alaska: stratigraphy, palaeofloristics, and plant communities. Cretaceous Research 22:140.Google Scholar
Spicer, R. A., and Parrish, J. T. 1986. Paleobotanical evidence for cool north polar climates in middle Cretaceous (Albian-Cenomanian) time. Geology 14:703706.Google Scholar
Spicer, R. A., Ahlberg, A., Herman, A. B., Kelley, S. P., Raikevich, M. I., and Rees, P. M. 2002. Palaeoenvrionment and ecology of the middle Cretaceous Grebenka flora of northeastern Asia. Palaeogeography, Palaeoclimatology, Palaeoecology 184:65105.Google Scholar
Stewart, W. N. 1983. Paleobotany and the evolution of plants. Cambridge University Press, Cambridge.Google Scholar
Tang, C. Q., and Ohsawa, M. 1997. Zonal transition of evergreen, deciduous, and coniferous forests along the altitudinal gradient on a humid subtropical mountain, Mt. Emei, Sichuan, China. Plant Ecology 133:6378.Google Scholar
Tang, Z. C., and Kozlowski, T. T. 1982. Physiological, morphological, and growth responses of Platanus occidentalis seedlings to flooding. Plant and Soil 66:243255.Google Scholar
Taylor, D. W., and Hickey, L. J. 1996. Evidence for and implications of an herbaceous origin for angiosperms. Pp. 232266in Taylor, D. W. and Hickey, L. J., eds. Flowering plant origin, evolution, and phylogeny. Chapman and Hall, New York.Google Scholar
Thomas, B., and Spicer, R. A. 1987. The evolution and paleobotany of land plants. Croom Helm, Kent, England.Google Scholar
Thomas, R. L., and Anderson, R. C. 1993. Influence of topography on stand composition in a midwestern ravine forest. American Midland Naturalist 130:112.Google Scholar
Tralau, H. 1967. The phytogeographic evolution of the genus Ginkgo L. Botaniska Notiser 120:409422.Google Scholar
Tralau, H. 1968. Evolutionary trends in the genus Ginkgo. Lethaia 1:63101.Google Scholar
Tsukahara, H., and Kozlowski, T. T. 1985. Importance of adventitious roots to growth of flooded Platanus occidentalis seedlings. Plant and Soil 88:123132.Google Scholar
Uemura, K. 1997. Cenozoic history of Ginkgo in east Asia. Pp. 207221in Hori, et al. 1997.Google Scholar
Vakhrameev, V. A. 1991. Jurassic and Cretaceous floras and climates of the earth. Translated by Litvinov, Ju. V., edited by Hughes, Norman F.Cambridge University Press, Cambridge.Google Scholar
Van Konijnenburg-van Cittert, J. H. A. 1971. In situ gymnosperm pollen from the Middle Jurassic of Yorkshire. Botanica Neerlandica 20:196.Google Scholar
Vasilevskaya, N. D. 1963. Poryakod 2. Ginkgoales, Obshchaya Chast'. Pp. 168182in Takhtajahn, A. L., Vachrameev, V. A., and Radchenko, G. P., eds. Osnovy Paleontologii-Golosemennye i Pokrytosemennye. (Spravochnik delya Paleontologov i Geologov SSSR.)Akademiya Nauk SSSR, Moscow.Google Scholar
Vasilevskaya, N. D., and Kara-Murza, Z. H. 1963. Spetsial'naya Chast', Semeistov Ginkgoaceae. Pp. 182184in Takhtajahn, A. L., Vachrameev, V. A., and Radchenko, G. P., eds. Osnovy Paleontologii-Golosemennye i Pokrytosemennye. (Spravochnik delya Paleontologov i Geologov SSSR.)Akademiya Nauk SSSR, Moscow.Google Scholar
de Seoane, L. Villar 1997. Comparative study between Ginkgoites tigrensis Archangelsky and Ginkgo biloba Linn. leaves. Palaeobotanist 46:112.Google Scholar
Wang, C.-W. 1961. The Forests of China. Maria Moors Cabot Foundation, Cambridge, Mass.Google Scholar
Ware, S., Redfearn, P. L., Pyrah, G. L., and Weber, W. R. 1992. Soil pH, topography and forest vegetation in the central Ozarks. American Midland Naturalist 128:4052.Google Scholar
Westoby, M., Jurado, E., and Leishman, M. 1992. Comparative evolutionary ecology of seed size. Trends in Ecology and Evolution 7:368372.Google Scholar
Wing, S. L. 1984. Relation of paleovegetation to geometry and cyclicity of some fluvial carbonaceous deposits. Journal of Sedimentary Petrology 54:5266.Google Scholar
Wing, S. L., and Boucher, L. D. 1998. Ecological aspects of the Cretaceous flowering plant radiation. Annual Review of Earth and Planetary Sciences 26:379421.Google Scholar
Wing, S. L., Hickey, L. J., and Swisher, C. C. 1993. Implications of an exceptional fossil flora for Late Cretaceous vegetation. Nature 363:342344.Google Scholar
Wing, S. L., Alroy, J., and Hickey, L. J. 1995. Plant and mammal diversity in the Paleocene to Early Eocene of the Bighorn Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 115:117155.Google Scholar
Wing, S. L., Bao, H., and Koch, P. L. 2000. An early Eocene cool period? Evidence for continental cooling during the warmest part of the Cenozoic. Pp. 197237in Huber, B. T., MacLeod, K. G., and Wing, S. L., eds. Warm climates in earth history. Cambridge University Press, Cambridge.Google Scholar
Wolfe, J. A. 1977. Paleogene floras from the Gulf of Alaska region. U.S. Geological Survey Professional Paper 997:1108.Google Scholar
Wyman, D. 1965. Ginkgo biloba fastigiata. American Nurseryman 121(11):37.Google Scholar
Yoshitama, K. 1997. Flavonoids of Ginkgo biloba. Pp. 287299in Hori, et al. 1997.Google Scholar
Zhou, Z. 1993. Comparative ultrastructure of fossil and living ginkgoacean megasporemembranes. Review of Palaeobotany and Palynology 78:167182.Google Scholar
Ziegler, A. M., Rees, P.M., Rowley, D. B., Bekker, A., Qing, L., and Hulver, M. L. 1996. Mesozoic assembly of Asia: constraints from fossil floras, tectonics, and paleomagnetism. Pp. 371400in Yin, A. and Harrison, M., eds. The tectonic evolution of Asia. Cambridge University Press, Cambridge.Google Scholar