Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-28jzs Total loading time: 0.395 Render date: 2021-02-27T17:05:36.967Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Marine biotic interchange between the northern and southern hemispheres

Published online by Cambridge University Press:  14 July 2015

David R. Lindberg
Affiliation:
Museum of Paleontology, University of California, Berkeley, California 94720

Abstract

Patterns of bipolar or antitropical distributions occur in a diverse array of marine invertebrate, vertebrate, and plant groups in the eastern Pacific Ocean. Available geologic and paleontological evidence does not support vicariance as a process in the creation of these distributions but instead favors biotic interchange between hemispheres. Moreover, the timing of these events suggests several breaches (both northward and southward) of the tropics rather than a single event. The fossil record is extremely important in delimiting potential hypotheses and allowing correlation with vicariance events. The congruence of some interchanges with major regional tectonic activity and others with Pleistocene glaciations is not surprising and argues for a plurality of mechanisms. Extinction of endemic taxa following interchange among marine invertebrates is rare, and none of the antitropical distributions reviewed here suggests that the arrival of a taxon in the adjoining hemisphere resulted in the extinction of an endemic taxon. Instead, interchange and endemic taxa coexist. In contrast to the extinction patterns, the patterns of radiations are extremely diverse with some immigrant taxa undergoing remarkable radiations, whereas other taxa are represented by single species. Temperate nearshore rocky communities in both the northern and southern hemispheres appear to be mosaics of species that share common ancestry (because of interchange), are cosmopolitan, and have independent origins within the region. Although some communities appear to be organized around products of interchange (e.g., kelp forests of California and Chile), only the taxa have immigrated; linkages and interactions between species are independent and locally derived.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below.

References

Adams, C. G., Lee, D. E., and Rosen, B. R.. 1990. Conflicting isotopic and biotic evidence for tropical sea-surface temperatures during the Tertiary. Palaeogeography, Palaeoclimatology, Palaeoecology 77:289313.CrossRefGoogle Scholar
Barnes, L. G., Domning, D. P., and Ray, C. E.. 1985. Status of studies on fossil marine mammals. Marine Mammal Science 1:1553.CrossRefGoogle Scholar
Berg, L. S. 1933. Die bipolare Verbreitung der Organismen und die Eiszeit. Zoogeographica 1:449484.Google Scholar
Briggs, J. C. 1987. Antitropical distribution and evolution in the Indo-west Pacific Ocean. Systematic Zoology 36:237248.CrossRefGoogle ScholarPubMed
Brink, K. H. 1983. The near-surface dynamics of coastal upwelling. Progress in Oceanography 12:223257.CrossRefGoogle Scholar
Brink, K. H., Halpern, D., Huyer, A., and Smith, R. L.. 1983. The physical environment of the Peruvian upwelling system. Progress in Oceanography 12:285306.CrossRefGoogle Scholar
Brinton, E. 1962. The distribution of Pacific euphausiids. Bulletin Scripps Institution of Oceanography 8:51270.Google Scholar
Castilla, J. C. 1981. Perspectivas de investigacion en estructura y dinamica de comunidades intermaveales rocosas de Chile central. II. De predadores de alto nivel trofico. Medio Ambiente 5:190215.Google Scholar
Champion, D. E., Howell, D. G., and Marshall, M. C.. 1981. Paleomagnetic evidence for 380 km of northwestward translation of San Miguel Island, Southern California Borderland. ESO, American Geophysical Union Transactions 62:855.Google Scholar
Champion, D. E., and Howell, D. G.. 1986. Paleomagnetism of Cretaceous and Eocene strata, San Miguel Island, California, Borderland and the northward translation of Baja California. Journal of Geophysical Research 91:1155711570.CrossRefGoogle Scholar
Cole, M. R., and Armentrout, J. M.. 1979. Neogene paleogeography of the western United States. Pp. 297323. In Armentrout, J. M., Cole, M. R., and TerBest, H. Jr. (eds.), Cenozoic Paleogeography of the Western United States (Pacific Coast Paleogeography Symposium 3). Society of Economic Paleontologists and Mineralogists; Los Angeles, California.Google Scholar
Connell, J. H. 1972. Community interactions on marine rocky intertidal shores. Annual Review of Ecology and Systematics 3:169192.CrossRefGoogle Scholar
Dall, W. H. 1909. Report on a collection of shells from Peru, with a summary of the littoral marine Mollusca of the Peruvian Zoological Province. Proceedings of the United States National Museum 37:147294.CrossRefGoogle Scholar
Dana, J. D. 1852. Crustacea. Part II. United States Exploring Expedition during the years 1883, 1839, 1840, 1841, 1842, under the command of Charles Wilkes, U.S.N. Vol. XIII. Philadelphia.Google Scholar
Darwin, C. 1859. On the origin of species by natural selection, or the preservation of favoured races in the struggle for life. John Murray; London.Google Scholar
Dawson, E. Y. 1946. Marine algae associated with upwelling along the northwestern coast of Baja California, Mexico. Bulletin of the Southern California Academy of Sciences 44:5771.Google Scholar
Dawson, E. Y. 1951. A further study of upwelling and associated vegetation along Pacific Baja California, Mexico. Journal of Marine Research 10:3958.Google Scholar
Dayton, P. K. 1984. Processes structuring some marine communities: are they general? Pp. 181200. In Strong, D. R. Jr., Simberloff, D., Abele, L. G., and Thistle, A. B. (eds.), Ecological Communities: Conceptual Issues and the Evidence. Princeton University Press; Princeton, New Jersey.Google Scholar
Dayton, P. K. 1985. The structure and regulation of some South American kelp communities. Ecological Monographs 55:447468.CrossRefGoogle Scholar
DeVries, T. 1984. The fate of Pliocene marine mollusks from western South America. Abstracts with programs. The Geological Society of America 16(6):487.Google Scholar
Dunbar, R. B., Marty, R. C., and Baker, P. A.. 1990. Cenozoic marine sedimentation in the Sechura and Pisco basins, Peru. Palaeogeography, Palaeoclimatology, Palaeoecology 77:235261.CrossRefGoogle Scholar
Durham, J. W., and MacNeil, F. S.. 1967. Cenozoic migrations of marine invertebrates through the Bering Strait region. Pp. 326349. In Hopkins, D. M. (ed.), The Berling Land Bridge. Stanford University Press; Stanford, California.Google Scholar
Duque-Caro, H. 1990. Neogene stratigraphy, paleoceanography and paleobiogeography in northwest South America and the evolution of the Panama Seaway. Palaeogeography, Palaeoclimatology, Palaeoecology 77:203234.CrossRefGoogle Scholar
Ekman, S. 1953. Zoogeography of the sea. Sidgwick & Jackson; London.Google Scholar
Emerson, W. K. 1952. The influence of upwelling on the distribution of marine floras and faunas of the west coast of Baja California, Mexico. The American Malacological Union, Annual Report, 1952:3233.Google Scholar
Emerson, W. K. 1956. Upwelling and associated marine life along Pacific Baja California, Mexico. Journal of Paleontology 30:393397.Google Scholar
Estes, J. A., and Steinberg, P. D.. 1988. Predation, herbivory, and kelp evolution. Paleobiology 14:1936.CrossRefGoogle Scholar
Flint, R. F. 1971. Glacial and Quaternary Geology. John Wiley and Sons; New York.Google Scholar
Forbes, E. 1846. On the connexion between the distribution of the existing fauna and flora of the British Isles, and the geological changes which have affected their area especially during the epoch of the great northern drift. Memoirs of the Geological Survey of Great Britain 1:336432.Google Scholar
Foster, M. S., De Vogelaere, A. P., Harrold, C., Pearse, J. S., and Thum, A. B.. 1988. Causes of spatial and temporal patterns in rocky intertidal communities of central and northern California. Memoirs of the California Academy of Sciences 9:145.Google Scholar
Frank, P. W. 1982. Effects of winter feeding on limpets by Black Oystercatchers (Haematopus bachmani). Ecology 63:13521362.CrossRefGoogle Scholar
Garth, J. S. 1957. Reports of the Lund University Chile Expedition 1948-49. 29. The Crustacea Decapoda Brachyura of Chile. Lunds Universitets Årsskrift, N.F. Avd. 2. Bd 53. 7:1130.Google Scholar
Gosliner, T. 1987a. Biogeography of the opisthobranch gastropod fauna of southern Africa. American Malacological Bulletin 5:243258.Google Scholar
Gosliner, T. 1987b. Nudibranchs of southern Africa. Sea Challengers; Monterey, California.Google Scholar
Grant, U.S. IV, and Gale, H. R.. 1931. Catalogue of the marine Pliocene and Pleistocene Mollusca of California. Memoirs of the San Diego Society of Natural History 1:11036.Google Scholar
Hallam, A. 1981. Response. P. 340. In Nelson, G. and Rosen, D. R. (eds.), Vicariance Biogeography: a Critique. Columbia University Press; New York.Google Scholar
Haq, B. U., Hardenbol, J., and Vail, P. R.. 1987. Chronology of fluctuating sea levels since the Triassic. Science 235:11561167.CrossRefGoogle ScholarPubMed
Hay, C. H. 1990. The distribution of Macrocystis (Phaeophyta: Laminariales) as a biological indicator of cool sea surface temperature, with special reference to New Zealand waters. Journal of the Royal Society of New Zealand 20:313336.CrossRefGoogle Scholar
Hedgpeth, J. W. 1957. Marine biogeography. Pp. 359382. In Hedgpeth, J. W. (ed.), Treatise on Marine Ecology and Paleoecology. Geological Society of America Memoir 67, Vol. 1.CrossRefGoogle Scholar
Herm, D. 1969. Marines Pliozän und Pleistozän in Nord- und Mittel-Chile unter besonderer Berücksichtigung der Entwicklung der Mollusken-Faunen. Zitteliana 2:1159.Google Scholar
Hickman, C. S. 1980. Paleogene marine gastropods of the Keasey Formation in Oregon. Bulletin of American Paleontology 78:1112.Google Scholar
Hickman, C. S., and Lindberg, D. R.. 1984. Relationship of molluscan biogeographic anomalies to changing settings on an active continental margin. Abstracts with programs, The Geological Society of America 16(5):289.Google Scholar
Hickman, C. S., and McLean, J. H.. 1990. Systematic revision and suprageneric classification of trochacean gastropods. Natural History Museum of Los Angeles County, Science Series, Special Publication 35:1169.Google Scholar
Hockey, P.A.R., and Branch, G. M.. 1984. Oystercatchers and limpets: impact and implications. A preliminary assessment. Ardea 72:199206.Google Scholar
Howell, D. G., Jones, D. L., and Schermer, E. R.. 1985. Tectonostratigraphic terranes of the circum-Pacific region. Pp. 330. In Howell, D. G. (ed.), Tectonostratigraphic Terranes of the Circum-Pacific Region. Circum-Pacific Council for Energy and Mineral Resources; Houston, Texas.Google Scholar
Hubbs, C. L. 1948. Changes in the fish fauna of western North America correlated with changes in ocean temperature. Journal of Marine Research 7:459482.Google Scholar
Hubbs, C. L. 1952. Antitropical distribution of fishes and other organisms. Proceedings of the 7th Pacific Science Congress 3:324330.Google Scholar
Huyer, A. 1983. Coastal upwelling in the California Current system. Progress in Oceanography 12:259284.CrossRefGoogle Scholar
Jablonski, D., and Lutz, R. A.. 1983. Larval ecology of marine benthic invertebrates: paleobiological implications. Biological Reviews of the Cambridge Philosophical Society 58:2189.CrossRefGoogle Scholar
Kauffman, E. G., and Johnson, C. C.. 1988. The morphological and ecological evolution of Middle and Upper Cretaceous reef-building rudistids. Palaios 3:194216.CrossRefGoogle Scholar
Kay, E. A. 1980. Little worlds of the Pacific: an essay on Pacific basin biogeography. Harold L. Lyon Arboretum Lecture 9. University of Hawaii; Honolulu.Google Scholar
Keen, A. M. 1971. Seashells of tropical west America. Second edition. Stanford University Press; Stanford.Google Scholar
Keigwin, L. D. Jr. 1978. Pliocene closing of the Isthmus of Panama, based on biostratigraphic evidence from nearby Pacific Ocean and Caribbean sea cores. Geology 6:630634.2.0.CO;2>CrossRefGoogle Scholar
Keigwin, L. D. Jr. 1982. Isotopic paleooceanography of the Caribbean and East Pacific: role of Panama uplift in late Neogene time. Science 217:350353.CrossRefGoogle Scholar
King, J. E. 1983. Seals of the World. 2nd ed. Cornell University Press; Ithaca, New York.Google Scholar
Lewis, J. R., and Bowman, R. S.. 1975. Local habitat-induced variations in the population dynamics of Patella vulgata L. Journal of Experimental Marine Biology and Ecology 17:165203.CrossRefGoogle Scholar
Lindberg, D. R. 1988a. Systematics of the Scurriini (New Tribe) of the northeastern Pacific Ocean (Patellogastropoda: Lottiidae). Veliger 30:387394.Google Scholar
Lindberg, D. R. 1988b. The Patellogastropoda. Malacological Review, Supplement 4:3563.Google Scholar
Lindberg, D. R. 1990. Systematics of Potamacmaea fluviatilis (Blanford): a brackish water patellogastropod (Patelloidinae: Lottiidae). Journal of Molluscan Studies 56:309316.CrossRefGoogle Scholar
Lindberg, D. R., Warheit, K. I., and Estes, J. A.. 1987. Prey preference and seasonal predation by oystercatchers on limpets at San Nicolas Island, California, USA. Marine Ecology Progress Series 39:105113.CrossRefGoogle Scholar
Lipps, J. H. 1979. Ecology and paleoecology of planktic foraminifera. Pp. 62104. In Lipps, J. H., Berger, W. H., Buzas, M. A., Douglas, R. G. and Ross, C. A. (eds.), Foraminiferal Ecology and Paleoecology. Lecture Notes for Short Course No. 6. Society of Economic Paleontologists and Mineralogists; Houston, Texas.CrossRefGoogle Scholar
Lubchenco, J., and Menge, B. A.. 1978. Community development and the persistence in a low rocky intertidal zone. Ecological Monographs 48:676694.CrossRefGoogle Scholar
Marcus, E. 1959. Reports of the Lund University Chile Expedition 1948-49. 36. Lamellariacea und Opisthobranchia. Lunds Universitet Årsskrift, N.F. Avd. 2. Bd 55. 9:1134.Google Scholar
Marincovich, L. Jr. 1973. Intertidal marine mollusks of Iquique, Chile. Natural History Museum of Los Angeles County, Science Bulletin 16:149.Google Scholar
Marsh, C. P. 1987. Impact of avian predators on high intertidal limpet populations. Journal of Experimental Marine Biology and Ecology 104:185201.CrossRefGoogle Scholar
Marshall, L. G. 1985. Geochronology and land-mammal biochronology of the transamerican faunal interchange. Pp. 4985. In Stehli, F. G., and Webb, S. D. (eds.), The Great American Biotic Interchange. Plenum Press; New York.CrossRefGoogle Scholar
McLean, J. H. 1970. Order Archaeogastropoda. Pp. 307363. In Keen, A. M. (ed.), Sea Shells of Tropical West America. Second edition. Stanford University Press; Stanford, California.Google Scholar
McLean, J. H. 1982. Large archibenthal gastropods of central Chile: collections from an expedition of the R/V Anton Bruun and the Chilean shrimp fishery. Natural History Museum of Los Angeles County, Contributions in Science 342:120.Google Scholar
McLean, J. H. 1984a. Shell reduction and loss in fissurellids: a review of genera and species in the Fissurellidea group. American Malacological Bulletin 2:2134.Google Scholar
McLean, J. H. 1984b. Systematics of Fissurella in the Peruvian and Magellanic faunal provinces (Gastropoda: Prosobranchia). Natural History Museum of Los Angeles County, Contributions in Science 354:170.Google Scholar
Mileikovsky, S. A. 1971. Types of larval development in marine bottom invertebrates, their distribution and ecological significance: a re-evaluation. Marine Biology 10:193213.CrossRefGoogle Scholar
Moore, T. C. Jr., Hutson, W. H., Kipp, N., Hays, J. D., Prell, W., Thompson, P., and Boden, G.. 1981. The biological record of the ice-age ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 35:203234.CrossRefGoogle Scholar
Moreno, C. A., and Sutherland, J. P.. 1982. Physical and biological processes in a Macrocystis pyrifera community near Valdívia, Chile. Oecologia 55:16.CrossRefGoogle Scholar
Muizon, C. de. 1978. Arctocephalus (Hydrarctos) lomasiensis, subgen. nov. et nov. sp. un nouvel Otariidae du Mio-Pliocenène de Sacaco (Pérou). Bulletin de l'Institut Français d'Etudes Andines 7:169188.Google Scholar
Muizon, C. de. 1981. Les vertébrés fossiles de la formation Pisco (Perou), 1: Deux nouveaux Monachinae (Phocidae, Mammalia) du Pliocene de Sud-Sacaco. Travaux de l'Institut francais d'Etudes andines 22. (Recherche sur les grandes civilisation mémoire 6); Paris.Google Scholar
Nations, D. 1979. The genus Cancer and its distribution in time and space. Bulletin of the Biological Society of Washington 3:153187.Google Scholar
Nelson, G. J. 1985. A decade of challenge: the future of biogeography. Earth Sciences History 4(2):187196.Google Scholar
Nelson, G. J., and Platnick, N. I.. 1981. Cladistics and Vicariance: Patterns in Comparative Biology. Columbia University Press; New York.Google Scholar
Newman, W. 1979. On the biogeography of balanomorph barnacles of the southern ocean including new balanid taxa: a sub-family, two genera and three species. Proceedings of the International Symposium on Marine Biogeography and Evolution of the Southern Hemisphere 1978. 1:279306.Google Scholar
Norman, J. R. 1937. Coast fishes. 2. The Patagonian Region. Discovery Reports 16:1150.CrossRefGoogle Scholar
Olsson, A. A. 1964. Neogene mollusks from northwestern Ecuador. Paleontological Research Institution; Ithaca, New York.Google Scholar
Orians, G. H., and Paine, R. T.. 1983. Convergent evolution at the community level. Pp. 431458. In Futuyma, D. J., and Slatkin, M. (eds.), Coevolution. Sinauer Associates; Sunderland, Massachusetts.Google Scholar
Paine, R. T. 1977. Controlled manipulations in the marine intertidal zone and their contributions to ecological theory. Pp. 245270. In Goulden, C. E. (ed.), The Changing Scenes in Natural Sciences, 1776-1976. Special Publication 12, Academy of Natural Sciences of Philadelphia; Philadelphia, Pennsylvania.Google Scholar
Paine, R. T., and Levin, S. A.. 1981. Intertidal landscapes: disturbance and the dynamics of pattern. Ecological Monographs 51:145178.CrossRefGoogle Scholar
Philippi, R. A. 1887. Die tertiären und quartären Versteinerungen Chiles. Brockhaus; Leipzig.CrossRefGoogle Scholar
Pielou, E. C. 1979. Biogeography. John Wiley and Sons; New York.Google Scholar
Por, F. D. 1971. One hundred years of Suez Canal—a century of Lessepsian migration: retrospect and viewpoints. Systematic Zoology 20:138159.CrossRefGoogle Scholar
Radwin, G. E. 1977. The family Columbellidae in the western Atlantic. Veliger 19:403417.Google Scholar
Randell, J. E. 1982. Examples of antitropical and antoequatorial distributions of Indo-West Pacific fishes. Pacific Science 35:197209.Google Scholar
Raven, P. H. 1963. Amphitropical relationships in the floras of North and South America. Quarterly Review of Biology 38:151177.CrossRefGoogle Scholar
Reed, D. C., Laur, D. R., and Ebeling, A. W.. 1988. Variation in algal dispersal and recruitment: the importance of episodic events. Ecological Monographs 58:321335.CrossRefGoogle Scholar
Regan, C. T. 1916. The British fishes of the subfamily Clupeinae and related species in other seas. Annals and Magazine of Natural History, Series 8 8:118.Google Scholar
Rehder, H. A. 1980. The marine mollusks of Easter Island (Isla de Pascua) and Sala y Gómez. Smithsonian Contributions to Zoology 289:1167.CrossRefGoogle Scholar
Repenning, C. A., Ray, C. E., and Grigorescu, D.. 1979. Pinniped biogeography. Pp. 357369. In Gray, J., and Boucot, A. J. (eds.), Historical Biogeography, Plate Tectonics, and the Changing Environment. Oregon State University Press; Corvallis, Oregon.Google Scholar
Rotondo, G. M., Springer, V. G., Scott, G. A. J., and Schlanger, S. O.. 1981. Plate movement and island integration—a possible mechanism in the formation of endemic biotas, with special reference to the Hawaiian Islands. Systematic Zoology 30:1221.CrossRefGoogle Scholar
Santelices, B. 1980. Phytogeographic characterization of the temperate coast of Pacific South America. Phycologia 19:112.CrossRefGoogle Scholar
Scheltema, R. S. 1971. The dispersal of the larvae of shoal-water benthic invertebrate species over long distances by ocean currents. Pp. 728. In Crisp, D. J. (ed.), Fourth European Marine Biology Symposium. Cambridge University Press; Cambridge.Google Scholar
Scheltema, R. S., and Williams, I. P.. 1983. Long-distance dispersal of planktonic larvae and the biogeography and evolution of some Polynesian and western Pacific mollusks. Bulletin of Marine Science 33:545565.Google Scholar
Smith, J. T. 1970. Taxonomy, distribution and phylogeny of the cymatiid gastropods Argobuccinum, Fusitriton, Mediargo, and Priene . Bulletins of American Paleontology 56(254):443573.Google Scholar
Soot-Ryen, T. 1955. A report on the family Mytilidae. Allan Hancock Pacific Expeditions 20:1175.Google Scholar
Soot-Ryen, T. 1959. Reports of the Lund University Chile Expedition 1948-49. 35. Pelecypoda. Lunds Universitets Årsskrift, N.F. Avd. 2. Bd 55. 6:186.Google Scholar
Sousa, W. P. 1984. The role of disturbance in natural communities. Annual Review of Ecology and Systematics 15:353391.CrossRefGoogle Scholar
Springer, V. G. 1982. Pacific plate biogeography, with special reference to shorefishes. Smithsonian Contributions to Zoology 367:1167.CrossRefGoogle Scholar
Stanley, E. M. 1981. Biogeography and evolution of “bipolar” Radiolaria. Ph.D. Dissertation, Ecology. University of California; Davis.Google Scholar
Steinmann, G. 1896. Das Auftreten des Tertiärs im nördlichen Chile. Pp. 531547. In Möricke, W., and Steinmann, G. (eds.), Die Tertiärbildungen des nördlichen Chile und ihre Fauna. Neue Jahrbuch für Mineralogie, Geologie und Paläontologie 10.Google Scholar
Stephenson, T. A., and Stephenson, A.. 1972. Life between Tidemarks on Rocky Shores. W. H. Freeman; San Francisco.Google Scholar
Sverdrup, H. U., Johnson, M. W., and Fleming, R. H.. 1942. The Oceans. Prentice-Hall; Englewood Cliffs.Google Scholar
Theel, H. 1885. Report on the Holothuroidea. Part II. Voyage of the H.M.S. Challenger. Zoology 14:1290.Google Scholar
Trenhaile, A. S. 1987. The geomorphology of rock coasts. Clarendon Press; New York.Google Scholar
Underwood, A. J. 1979. The ecology of intertidal gastropods. Advances in Marine Biology 16:111210.CrossRefGoogle Scholar
Underwood, A. J., and Denley, E. J.. 1984. Paradigms, explanations and generalizations in models for the structure of intertidal communities on rocky shores. Pp. 151180. In Strong, D. R. Jr., Simberloff, D., Abele, L. G., and Thistle, A. B. (eds.), Ecological Communities: Conceptual Issues and the Evidence. Princeton University Press; Princeton, New Jersey.Google Scholar
Vail, P. R., and Hardenbol, J.. 1979. Sea-level changes during the Tertiary. Oceanus 22:7179.Google Scholar
Valentine, J. W. 1955. Upwelling and thermally anomalous Pacific coast Pleistocene molluscan faunas. American Journal of Science 253:462474.CrossRefGoogle Scholar
Valentine, J. W. 1961. Paleoecologic molluscan geography of the California Pleistocene. University of California Publications in Geological Sciences 34:309442.Google Scholar
Vermeij, G. J. 1978. Biogeography and adaptation. Harvard University Press; Cambridge, Massachusetts.Google Scholar
Vermeij, G. J. 1987. Evolution and escalation. An ecological history of life. Princeton University Press; Princeton.Google Scholar
Vermeij, G. J. 1991. Anatomy of an invasion: the trans-Arctic interchange. Paleobiology 17:000000.CrossRefGoogle Scholar
Vermeij, G. J., Palmer, A. R., and Lindberg, D. R.. 1990. Range limits and dispersal of molluscs in the Aleutian Islands, Alaska. Veliger 33(4):346354.Google Scholar
Vokes, E. H. 1988. Muricidae (Mollusca: Gastropoda) of the Esmeraldas Beds, northwestern Ecaudor. Tulane Studies in Geology and Paleontology 21(1):150.Google Scholar
Warheit, K. I., and Lindberg, D. R.. 1988. Interactions between seabirds and marine mammals through time: interference competition at breeding sites. Pp. 292328. In Burger, Jr. (ed.), Seabirds and Other Marine Vertebrates: Commensalism, Competition, and Predation. Columbia University Press; New York.Google Scholar
Weaver, A. J. 1990. Ocean currents and climate. Nature 347:432.CrossRefGoogle Scholar
Webb, S. D. 1985. Late Cenozoic mammal dispersals between the Americas. Pp. 4985. In Stehli, F. G., and Webb, S. D. (eds.), The Great American Biotic Interchange. Plenum Press; New York.Google Scholar
White, B. N. 1986. The isthmian link, antitropicality and American biogeography: distributional history of the Atherinopsinae (Pisces: Atherinidae). Systematic Zoology 35:176196.CrossRefGoogle Scholar
Wiley, E. O. 1981. Phylogenetics. John Wiley and Sons; New York.Google Scholar
Williams, G. C., and Gosliner, T. M.. 1979. Two new species of nudibranchiate molluscs from the west coast of North America, with a synonymy in the family Cuthonidae. Zoological Journal of the Linnean Society 67:203223.CrossRefGoogle Scholar
Wu, S. K. 1985. The genus Acanthina (Gastropoda: Muricacea) in west America. Special Publication of the Mukaishima Marine Biological Station 1985:4566.Google Scholar
Zinsmeister, W. J. 1977. The formation of the West Antarctic ice sheet and its effect on the Miocene molluscan faunas of southern and central Chile. Abstracts with Programs, Annual Meeting, Geological Society of America 6:12401241.Google Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 14 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 27th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Marine biotic interchange between the northern and southern hemispheres
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Marine biotic interchange between the northern and southern hemispheres
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Marine biotic interchange between the northern and southern hemispheres
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *