Skip to main content Accessibility help

An ecomorphospace for the Ammonoidea

  • Sonny A. Walton (a1) and Dieter Korn (a1)


The fossil conchs of ammonoids provide valuable information about the life habits of this extinct group. A new conch measurement, the apertural surface area (ASarea), is introduced here along with modeled sizes of the buccal mass and the hyponome, based on ratios of these organs in comparison with the aperture height from the Recent Nautilus pompilius. A principal components analysis was performed using the three main characters: (1) apertural surface area index (i.e., the ratio of the apertural surface and the conch diameter), (2) buccal mass area index (i.e., the ratio between the buccal mass area and the ASarea), and (3) coiling rate of the conch. It revealed an ecomorphospace where life history traits can be tentatively assigned to species of the Ammonoidea. In this morphospace, Recent Nautilus has a marginal position, being one of the ectocochleate cephalopods with best properties for active life (capacity for handling large food items, rather good mobility). In contrast, most ammonoids possessed, at comparable conch sizes, much smaller buccal apparatuses and hyponomes, suggesting a more passive life history with reduced mobility potential and reduced capacities for larger prey items.



Hide All
Bonnot, A., Boursicot, P.-Y., Ferchaud, P., and Marchand, D.. 2008. Les Pseudoperisphinctinae (Ammonitina, Perisphinctidae) de l’horizon à Leckenbyi (Callovien supérieur, zone à Athleta) de Montreuil-Bellay (Maine-et-Loire, France) et description d’une nouvelle espèce, Choffatia isabellae . Carnets de Geologie 5:114.
Boyle, P., and Rodhouse, P.. 2005. Cephalopods: ecology and fisheries. Blackwell Science, Oxford.
De Baets, K., Klug, C., Korn, D., and Landman, N. H.. 2012. Early evolutionary trends in ammonoid embryonic development. Evolution 66:17881806.
Doguzhaeva, L. A., and Mapes, R. H.. 2015. The body chamber length variations and muscle and mantle attachments in ammonoids. Pp. 545–584 in Klug et al. 2015a.
Dunstan, A. J., Ward, P. D., and Marshall, N. J.. 2011. Vertical distribution and migration patterns of Nautilus pompilius . PLoS ONE 6:e16311.
Ebbighausen, V., Korn, D., and Bockwinkel, J.. 2010. The ammonoids from the Dalle à Merocanites of Timimoun (Late Tournaisian–Early Viséan; Gourara, Algeria). Fossil Record 13:153202.
Gould, S. J. 1966. Allometry and size in ontogeny and phylogeny. Biological Reviews 41:587638.
Gould, S. J. 1971. Geometric similarity in allometric growth: a contribution to the problem of scaling in the evolution of size. American Naturalist 105:113136.
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.. 2001. PAST: paleontological statistics software package for education and data analysis. Paleontología Electrónica 4:19.
Haniel, C. A. 1915. Die Cephalopoden der Dyas von Timor. Palaontologie von Timor 3:1153.
Hauer, F. R. von. 1847. Neue Cephalopoden aus dem rothen Marmor von Aussee. Haidinger’s naturwissenschaftliche Abhandlung 1:121.
Hauer, F. R. von 1849. Über neue Cephalopoden aus den Marmorschichten von Hallstatt und Aussee. Haidinger’s naturwissenschaftliche Abhandlung 3:126.
Hoffmann, R., and Zachow, S.. 2011. Non-invasive approach to shed new light on the buoyancy business of chambered cephalopods (Mollusca). International Association for Mathematical Geosciences publication. doi:
Hoffmann, R., Schultz, J. A., Schellhorn, R., Rybacki, E., Keupp, H., Gerden, S. R., Lemanis, R., and Zachow, S.. 2014. Non-invasive imaging methods applied to neo- and paleo-ontological cephalopod research. Biogeosciences 11:27212739.
Huxley, J. S. 1924. Constant differential growth-ratios and their significance. Nature 114:895896.
Huxley, J. S. 1950. Relative growth and form transformation. Proceedings of the Royal Society of London B 137:465469.
Huxley, J. S., and Teissier, G.. 1936. Terminology of relative growth. Nature 137:780781.
Jacobs, D. K. 1992. Shape, drag, and power in ammonoid swimming. Paleobiology 18:203220.
Jacobs, D. K., and Chamberlain, J. A.. 1996. Buoyancy and hydrodynamics in ammonoids. Pp. 169–224 in Landman et al. 1996a.
Jacobs, D. K., and Landman, N. H.. 1993. Nautilus—a poor model for the function and behavior of ammonoids? Lethaia 26:101111.
Jager, M., and Fraaye, R.. 1997. The diet of the Early Toarcian ammonite Harpoceras falciferum . Palaeontology 40:557574.
Kant, R., and Kullmann, J.. 1973. “Knickpunkte” im allometrischen Wachstum von Cephalopoden-Gehäusen. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 142:97114.
Klug, C. 2001. Life-cycles of some Devonian ammonoids. Lethaia 34:215233.
Klug, C., and Jerjen, I.. 2012. The buccal apparatus with radula of a ceratitic ammonoid from the German Middle Triassic. Geobios 45:5765.
Klug, C., and Korn, D.. 2004. The origin of ammonoid locomotion. Acta Palaeontologica Polonica 49:235242.
Klug, C., and Lehmann, J.. 2015. Soft Part anatomy of ammonoids: reconstructing the animal based on exceptionally preserved specimens and actualistic comparisons. Pp. 507–529 in Klug et al. 2015a.
Klug, C., Riegraf, W., and Lehmann, J.. 2012. Soft-part preservation in heteromorph ammonites from the Cenomanian–Turonian Boundary Event (OAE 2) in north-west Germany. Palaeontology 55:13071331.
Klug, C., Korn, D., Baets, K. D., Kruta, I., and Mapes, R. H. eds 2015a. Ammonoid paleobiology: from anatomy to ecology. Springer, Dordrecht, Netherlands.
Klug, C., Zatoń, M., Parent, H., Hostettler, B., and Tajika, A.. 2015b. Mature modifications and sexual dimorphism. Pp. 253–320 in Klug et al. 2015a.
Klug, C., Baets, K. D., and Korn, D.. 2016a. Exploring the limits of morphospace: ontogeny and ecology of Late Viséan ammonoids from the Tafilalt, Morocco. Acta Palaeontologica Polonica 61:114.
Klug, C., Frey, L., Korn, D., Jattiot, R., and Rücklin, M.. 2016b. The oldest Gondwanan cephalopod mandibles (Hangenberg Black Shale, Late Devonian) and the mid-Palaeozoic rise of jaws. Palaeontology 59:611629.
Korn, D. 2000. Morphospace occupation of ammonoids over the Devonian–Carboniferous boundary. Paläontologische Zeitschrift 74:247257.
Korn, D. 2010. A key for the description of Palaeozoic ammonoids. Fossil Record 13:512.
Korn, D. 2012. Quantification of ontogenetic allometry in ammonoids. Evolution and Development 14:501514.
Korn, D., and Klug, C.. 2003. Morphological pathways in the evolution of Early and Middle Devonian ammonoids. Paleobiology 29:329348.
Korn, D., and Klug, C.. 2007. Conch form analysis, variability, morphological disparity, and mode of life of the Frasnian (Late Devonian) ammonoid Manticoceras from Coumiac (Montagne Noire, France). Pp. 5785. in N. H. Landman, R. A. Davis, and R. H. Mapes, eds. Cephalopods present and past: new insights and fresh perspectives. Springer, Dordrecht, Netherlands.
Korn, D., and Klug, C.. 2012. Palaeozoic ammonoids—diversity and development of conch morphology. Pp 491534. in E. P. J. A. Talent, ed. Earth and life. Springer, Dordrecht, Netherlands.
Kröger, B., Vinther, J., and Fuchs, D.. 2011. Cephalopod origin and evolution: a congruent picture emerging from fossils, development and molecules. BioEssays 33:602613.
Kruta, I., Landman, N. H., Mapes, R., and Pradel, A.. 2014. New insights into the buccal apparatus of the Goniatitina: palaeobiological and phylogenetic implications. Lethaia 47:3848.
Kruta, I., Landman, N., Rouget, I., Cecca, F., and Tafforeau, P.. 2011. The role of ammonites in the Mesozoic marine food web revealed by jaw preservation. Science 331:7072.
Kullmann, J. 1961. Die Goniatiten des Unterkarbons im Kantabrischen Gebirge (Nordspanien). I. Stratigraphie, Paläontologie der U.O. Goniatitina Hyatt. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 113:219326.
Kullmann, J., and Scheuch, J.. 1970. Wachstums-Änderungen in der Ontogenese paläozoischer Ammonoideen. Lethaia 3:397412.
Kullmann, J., and Scheuch, J.. 1972. Absolutes und relatives Wachstum bei Ammonoideen. Lethaia 5:129146.
Landman, N. H., Cochran, J. K., Rye, D. M., Tanabe, K., and Arnold, J. M.. 1994. Early life history of Nautilus: evidence from isotopic analyses of aquarium-reared specimens. Paleobiology 20:4051.
Landman, N. H., Tanabe, K., and Davis, R. A., eds 1996a. Ammonoid paleobiology. Springer, New York.
Landman, N. H., Tanabe, K., and Shigeta, Y.. 1996b. Ammonoid embryonic development. Pp. 343–405 in Landman et al. 1996a.
Lehmann, U. 1971. Jaws, radula, and crop of Arnioceras (Ammonoidea). Palaeontology 14:338341.
Lehmann, U. 1972. Aptychen als Kieferelemente der Ammoniten. Paläontologische Zeitschrift 46:3448.
Lehmann, U. 1975. Über Nahrung und Ernährungsweise von Ammoniten. Paläontologische Zeitschrift 49:187195.
Lehmann, U., and Kulicki, C.. 1990. Double function of aptychi (Ammonoidea) as jaw elements and opercula. Lethaia 23:325331.
Lemanis, R., Korn, D., Zachow, S., Rybacki, E., and Hoffmann, R.. 2016. The evolution and development of cephalopod chambers and their shape. PLoS ONE 11:e0151404.
Linnaeus, C. 1758. Systema naturæ per regna tria naturæ, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis Vol. 10 I. Tomus, ed. Stockholm, Sweden.
Mapes, R. H., and Nützel, A.. 2009. Late Palaeozoic mollusc reproduction: cephalopod egg-laying behavior and gastropod larval palaeobiology. Lethaia 42:341356.
Morton, N. 1981. Aptychi: the myth of the ammonite operculum. Lethaia 14:5761.
Naglik, C., Monnet, C., Goetz, S., Kolb, C., De Baets, K., Tajika, A., and Klug, C.. 2015. Growth trajectories of some major ammonoid sub-clades revealed by serial grinding tomography data. Lethaia 48:2946.
Nixon, M. 1988. The buccal mass of fossil and recent Cephalopoda. In M. R. Clarke, and E. R. Trueman, eds. The Mollusca. Paleontology and Neontology of Cephalopods 12:103122. Academic, London.
O’Dor, R. K., Wells, J., and Wells, M. J.. 1990. Speed, jet pressure and oxygen consumption relationships in free-swimming Nautilus . Journal of Experimental Biology 154:383396.
O’Dor, R. K., Forsythe, J., Webber, D. M., Wells, J., and Wells, M. J.. 1993. Activity levels of Nautilus in the wild. Nature 362:626628.
Okamoto, T. 1996. Theoretical modeling of ammonoid morphology. Pp. 225–251 in Landman et al. 1996a.
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. Journal of Paleontology 40:11781190.
Raup, D. M. 1967. Geometric analysis of shell coiling: coiling in ammonoids. Journal of Paleontology 41:4365.
Raup, D. M., and Michelson, A.. 1965. Theoretical morphology of the coiled shell. Science 147:12941295.
Ritterbush, K. A., and Bottjer, D. J.. 2012. Westermann morphospace displays ammonoid shell shape and hypothetical paleoecology. Paleobiology 38:424446.
Ritterbush, K. A., Hoffmann, R., Lukeneder, A., and De Baets, K.. 2014. Pelagic palaeoecology: the importance of recent constraints on ammonoid palaeobiology and life history. Journal of Zoology 292:229241.
Saisho, T., and Tanabe, K.. 1985. Notes on the esophagus and stomach-contents of Nautilus pompilius in Fiji. Kagoshima University, Research Center for the South Pacific, Occasional Papers 4:6264.
Saunders, W. B., and Shapiro, E. A.. 1986. Calculation and simulation of ammonoid hydrostatics. Paleobiology 12:6479.
Saunders, W. B., and Spinosa, C.. 1978. Sexual dimorphism in Nautilus from Palau. Paleobiology 4:349358.
Saunders, W. B., and Swan, A. R. H.. 1984. Morphology and morphologic diversity of mid-Carboniferous (Namurian) ammonoids in time and space. Paleobiology 10:195228.
Scharf, F. S., Juanes, F., and Rountree, R. A.. 2000. Predator size-prey size relationships of marine fish predators: interspecific variation and effects of ontogeny and body size on trophic-niche breadth. Marine Ecology Progress Series 208:229248.
Schlotheim, E. F. V. 1813. Beiträge zur Naturgeschichte der Versteinerungen in geognostischer Hinsicht. Pp 3134. in C. C. Leonard, ed. Taschenbuch für die gesamte Mineralogie mit Hinsicht auf die neuesten Entdeckungen. Hermannschen, Frankfurt am Main, Germany.
Shigeno, S., Sasaki, T., Moritaki, T., Kasugai, T., Vecchione, M., and Agata, K.. 2008. Evolution of the cephalopod head complex by assembly of multiple molluscan body parts: evidence from Nautilus embryonic development. Journal of Morphology 269:117.
Tajika, A., and Wani, R.. 2011. Intraspecific variation of hatchling size in Late Cretaceous ammonoids from Hokkaido, Japan: implication for planktic duration at early ontogenetic stage. Lethaia 44:287298.
Tajika, A., Naglik, C., Morimoto, N., Pascual-Cebrian, E., Hennhöfer, D., and Klug, C.. 2015. Empirical 3D model of the conch of the Middle Jurassic ammonite microconch Normannites: its buoyancy, the physical effects of its mature modifications and speculations on their function. Historical Biology 27:181191.
Tanabe, K. 2011. The feeding habits of ammonites. Science 331:3738.
Tanabe, K. 2012. Comparative morphology of modern and fossil coleoid jaw apparatuses. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 266:918.
Tanabe, K., and Fukuda, Y.. 1999. Morphology and function of cephalopod buccal mass. Pp. 245262. in E. Savazzi, ed. Functional morphology of the invertebrate skeleton. Wiley, London.
Tanabe, K., Fukuda, Y., Kanie, Y., and Lehmann, U.. 1980. Rhyncholites and conchorhynchs as calcified jaw elements in some late Cretaceous ammonites. Lethaia 13:157168.
Tanabe, K., Misaki, A., Landman, N. H., and Kato, T.. 2013. The jaw apparatuses of Cretaceous Phylloceratina (Ammonoidea). Lethaia 46:399408.
Tanabe, K., Kruta, I., and Landman, N. H.. 2015. Ammonoid buccal mass and jaw apparatus. Pp. 429–484 in Klug et al. 2015a.
Tendler, A., Mayo, A., and Alon, U.. 2015. Evolutionary tradeoffs, Pareto optimality and the morphology of ammonite shells. BMC Systems Biology 9:1223.
Trueman, A. E. 1940. The ammonite body-chamber, with special reference to the buoyancy and mode of life of the living ammonite. Quarterly Journal of the Geological Society 96:339383.
Uyeno, T. A., and Kier, W. M.. 2005. Functional morphology of the cephalopod buccal mass: a novel joint type. Journal of Morphology 264:211222.
Villier, L., and Korn, D.. 2004. Morphological disparity of ammonoids and the mark of Permian mass extinctions. Science 306:264266.
Walton, S. A., and Korn, D.. 2017. Iterative ontogenetic development of ammonoid conch shapes from the Devonian through to the Jurassic. Palaeontology 60:703726.
Walton, S. A., Korn, D., and Klug, C.. 2010. Size distribution of the Late Devonian ammonoid Prolobites: indication for possible mass spawning events. Swiss Journal of Geosciences 103:475494.
Ward, P., Stone, R., Westermann, G., and Martin, A.. 1977. Notes on animal weight, cameral fluids, swimming speed, and color polymorphism of the cephalopod Nautilus pompilius in the Fiji Islands. Paleobiology 3:377388.
Weitschat, W., and Bandel, K.. 1991. Organic components in phragmocones of boreal Triassic ammonoids: implications for ammonoid biology. Paläontologische Zeitschrift 65:269303.
Wells, M. J., and O’Dor, R. K.. 1991. Jet propulsion and the evolution of the cephalopods. Bulletin of Marine Science 49:419432.
Wells, M. J., and Wells, J.. 1982. Ventilatory currents in the mantle of cephalopods. Journal of Experimental Biology 99:315330.
Wells, M. J., and Wells, J.. 1985. Ventilation and oxygen uptake by Nautilus . Journal of Experimental Biology 118:297312.
Westermann, G. E. G. 1996. Ammonoid life and habitat. Pp. 607–707 in Landman et al. 1996a.
Woodward, H. 1885. II.—On some Palæozoic Phyllopod-shields, and on Nebalia and its allies. Geological Magazine 2:345352.
Wulfen, X. 1793. Abhandlung vom kärnthnerschen pfauenschweifigen Jelmintholoth oder dem sogenannten opalisierenden Muschelmarmor. Palm, Erlangen, Germany.
Young, R. E., and Vecchione, M.. 1996. Analysis of morphology to determine primary sister-taxon relationships within coleoid cephalopods. American Malacological Bulletin 12:91112.

Related content

Powered by UNSILO

An ecomorphospace for the Ammonoidea

  • Sonny A. Walton (a1) and Dieter Korn (a1)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.