Skip to main content

Body-shape diversity in Triassic–Early Cretaceous neopterygian fishes: sustained holostean disparity and predominantly gradual increases in teleost phenotypic variety

  • John T. Clarke (a1) and Matt Friedman (a2)

Comprising Holostei and Teleostei, the ~32,000 species of neopterygian fishes are anatomically disparate and represent the dominant group of aquatic vertebrates today. However, the pattern by which teleosts rose to represent almost all of this diversity, while their holostean sister-group dwindled to eight extant species and two broad morphologies, is poorly constrained. A geometric morphometric approach was taken to generate a morphospace from more than 400 fossil taxa, representing almost all articulated neopterygian taxa known from the first 150 million years—roughly 60%—of their history (Triassic‒Early Cretaceous). Patterns of morphospace occupancy and disparity are examined to: (1) assess evidence for a phenotypically “dominant” holostean phase; (2) evaluate whether expansions in teleost phenotypic variety are predominantly abrupt or gradual, including assessment of whether early apomorphy-defined teleosts are as morphologically conservative as typically assumed; and (3) compare diversification in crown and stem teleosts. The systematic affinities of dapediiforms and pycnodontiforms, two extinct neopterygian clades of uncertain phylogenetic placement, significantly impact patterns of morphological diversification. For instance, alternative placements dictate whether or not holosteans possessed statistically higher disparity than teleosts in the Late Triassic and Jurassic. Despite this ambiguity, all scenarios agree that holosteans do not exhibit a decline in disparity during the Early Triassic‒Early Cretaceous interval, but instead maintain their Toarcian‒Callovian variety until the end of the Early Cretaceous without substantial further expansions. After a conservative Induan‒Carnian phase, teleosts colonize (and persistently occupy) novel regions of morphospace in a predominantly gradual manner until the Hauterivian, after which expansions are rare. Furthermore, apomorphy-defined teleosts possess greater phenotypic variety than typically assumed. Comparison of crown and stem teleost partial disparity indicates that, despite a statistically significant increase in crown teleost disparity between the Late Jurassic and earliest Cretaceous, stem teleosts remained important long-term contributors to overall teleost disparity during this time.

Hide All
Alfaro, M. E., Santini, F., Brock, C., Alamillo, H., Dornburg, A., Rabosky, D. L., Carnevale, G., and Harmon, L. J.. 2009. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proceedings of the National Academy of Sciences USA 106:1341013414.
Arratia, G. 1997. Basal teleosts and teleostean phylogeny. Palaeo Ichthyologica 7:5168.
Arratia, G. 1999. The monophyly of Teleostei and stem-group teleosts. Consensus and disagreements. Pp. 265–334 in G. Arratia and H. P. Schultze, eds. Mesozoic fishes 2. Systematics and fossil record. Proceedings of the international meeting, Buckow, 1997. Verlag Dr. Friedrich Pfeil, Munich, Germany.
Arratia, G. 2000a. New teleostean fishes from the Jurassic of southern Germany and the systematic problems concerning the “pholidophoriforms.”. Palaeontologische Zeitschrift 74:113143.
Arratia, G. 2000b. Remarkable teleostean fishes from the Late Jurassic of southern Germany and their phylogenetic relationships. Mitteilungen aus dem Museum fuer Naturkunde in Berlin Geowissenschaftliche Reihe 3:137179.
Arratia, G. 2001. The sister-group of Teleostei: consensus and disagreements. Journal of Vertebrate Paleontology 21:767773.
Arratia, G. 2008. The varasichthyid and other crossognathiform fishes, and the break-up of Pangaea. Pp. 7192 in L. Cavin, A Longbottom, and M. Richter, eds. Break-up of Pangaea. Geological Society of London Special Publication 295.
Arratia, G. 2013. Morphology, taxonomy, and phylogeny of triassic pholidophorid fishes (Actinopterygii, Teleostei). Journal of Vertebrate Paleontology 33:1138.
Arratia, G. 2017. New Triassic teleosts (Actinopterygii, Teleosteomorpha) from northern Italy and their phylogenetic relationships among the most basal teleosts. Journal of Vertebrate Paleontology 37:e1312690.
Arratia, G., and Thies, D.. 2001. A new teleost (Osteichthyes, Actinopterygii) from the Early Jurassic Posidoizia shale of Northern Germany. Mitteilungen aus dem Museum für Naturkunde zu Berlin, Geowissenschaftliche Reihe 4:167187.
Arratia, G., and Tischlinger, H.. 2010. The first record of Late Jurassic crossognathiform fishes from Europe and their phylogenetic importance for teleostean phylogeny. Fossil Record 13:317341.
Bartram, A. 1977. A problematical Upper Cretaceous holostean fish genus Aphanepygus . Journal of Natural History 11:361370.
Bellwood, D., and Hoey, A.. 2004. Feeding in Mesozoic fishes: a functional perspective. Pp. 639–649 in G. Arratia and A. Tintori, eds. Mesozoic fishes 3. Systematics, paleoenvironments and biodiversity. Proceedings of the 3rd International Meeting, Serpiano, 2001. Verlag Dr. Friedrich Pfeil, Munich, Germany.
Bellwood, D. R. 2003. Origins and escalation of herbivory in fishes: a functional perspective. Paleobiology 29:7183.
Bellwood, D. R., Wainwright, P. C., Fulton, C. J., and Hoey, A. S.. 2006. Functional versatility supports coral reef biodiversity. Proceedings of the Royal Society of London B 273:101107.
Beltan, L. 1996. Overview of systematics, paleobiology, and paleoecology of Triassic fishes of northwestern Madagascar. Pp. 479–500 in G. Arratia, and V. Günter, eds. Mesozoic fishes. Systematics and paleoecology. Proceedings of the international meeting, Eichstatt, 1993. Verlag Dr. Friedrich Pfeil, Munich, Germany.
Benton, M. J. 2015. Vertebrate palaeontology, 4th ed. Wiley-Blackwell, Chichester, UK.
Benton, M. J., Donoghue, P. C. J., Asher, R. J., Friedman, M., Near, T. J., and Vinther, J.. 2015. Constraints on the timescale of animal evolutionary history. Palaeontologia Electronica 18.1.1FC.
Bermudez-Rochas, D. D., and Poyato-Ariza, F. J.. 2015. A new semionotiform actinopterygian fish from the Mesozoic of Spain and its phylogenetic implications. Journal of Systematic Palaeontology 13:265285.
Brito, P. M. 1997. Review of the Aspidorhynchidae (Pisces, Actinopterygii) of the Mesozoic: osteology, phylogenetic relations, environmental and biogeographic data. Geodiversitas 19:681772.
Butler, R. J., Barrett, P. M., Nowbath, S., and Upchurch, P.. 2009. Estimating the effects of sampling biases on pterosaur diversity patterns: implications for hypotheses of bird/pterosaur competitive replacement. Paleobiology 35:432446.
Butler, R. J., Brusatte, S. L., Andres, B., and Benson, R. B. J.. 2012. How do geological sampling biases affect studies of morphological evolution in deep time? A case study of pterosaur (Reptilia: Archosauria) disparity. Evolution 66:147162.
Callazo, A., Bolker, J. A., and Keller, R.. 1994. A phylogenetic perspective on teleost gastrulation. American Naturalist 144:133152.
Carroll, R. L. 1988. Vertebrate palaeontology and evolution. Freeman, New York.
Cavin, L. 2001. Osteology and phylogenetic relationships of the teleost Goulmimichthys arambourgi Cavin, 1995, from the Upper Cretaceous of Goulmima, Morocco. Eclogae Geologicae Helvetiae 94:509535.
Cavin, L. 2010. The Late Jurassic ray-finned fish peak of diversity: biological radiation or preservational bias? Pp. 111–121 in J. S. Nelson, H. P. Schultze, and M. V. H. Wilson, eds. Origin and phylogenetic interrelationships of teleosts. Verlag Dr. Friedrich Pfeil, Munich, Germany.
Cavin, L., and Forey, P. L.. 2007. Using ghost lineages to identify diversification events in the fossil record. Biology Letters 3:201204.
Cavin, L., Forey, P. L., and Lecuyer, C.. 2007. Correlation between environment and Late Mesozoic ray-finned fish evolution. Palaeogeography Palaeoclimatology Palaeoecology 245:353367.
Cavin, L., Deesri, U., and Suteethorn, V.. 2013a. Osteology and relationships of Thaiichthys nov gen.: a Ginglymodi from the Late Jurassic–Early Cretaceous of Thailand. Palaeontology 56:183208.
Cavin, L., Forey, P. L., and Giersch, S.. 2013b. Osteology of Eubiodectes libanicus (Pictet & Humbert, 1866) and some other ichthyodectiformes (Teleostei): phylogenetic implications. Journal of Systematic Palaeontology 11:115177.
Chakrabarty, P. 2005. Testing conjectures about morphological diversity in cichlids of lakes Malawi and Tanganyika. Copeia 2:359373.
Clarke, J. T., Lloyd, G. T., and Friedman, M.. 2016. Little evidence for enhanced phenotypic evolution in early teleosts relative to their living fossil sister group. Proceedings of the National Academy of Sciences USA 113:1153111536.
Claverie, T., and Wainwright, P. C.. 2014. A morphospace for reef fishes: elongation is the dominant axis of body shape evolution. PLoS ONE 9:e112732.
Colbert, E. H. 1969. Evolution of vertebrates. Wiley, New York.
Darwin, C. 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, 1st ed. John Murray, London.
Deesri, U., Lauprasert, K., Suteethorn, V., Wongko, K., and Cavin, L.. 2014. A new species of the ginglymodian fish Isanichthys from the Late Jurassic Phu Kradung Formation, northeastern Thailand. Acta Palaeontologica Polonica 59:313331.
Deesri, U., Jintasakul, P., and Cavin, L.. 2016. A new Ginglymodi (Actinopterygii, Holostei) from the Late Jurassic–Early Cretaceous of Thailand, with comments on the early diversification of lepisosteiformes in southeast asia. Journal of Vertebrate Paleontology, 36.
de Pinna, M. C. C. 1996. Teleostean monophyly. Pp. 147162 in M. L. J. Stiassny, L. R. Parenti, and G. D. Johnson, eds. Interrelationships of fishes. Academic Press, San Diego.
Ebert, M., Kolbl-Ebert, M., and Lane, J. A.. 2015. Fauna and predator-prey relationships of ettling, an actinopterygian fish-dominated Konservat-Lagerstatte from the Late Jurassic of southern Germany. PLoS ONE 10:e0116140.
Egerton, P. 1852. British fossils. Descriptions of Elasmodus, Palaeoniscus, Lepidotus, Pholidophorus, Ophiopsis, Leptolepis, Lophiostomus. Geological Survey of the United Kingdom (Organic Remains), London, Memoirs, 1852, 10 articles.
Foote, M. 1993. Contributions of individual taxa to overall morphological disparity. Paleobiology 19:403419.
Forey, P. L., and Patterson, C.. 2006. Description and systematic relationships of †Tomognathus, an enigmatic fish from the English Chalk. Journal of Systematic Palaeontology 4:157184.
Forey, P. L., Yi, L., Patterson, C., and Davies, C. E.. 2003. Fossil fishes from the Cenomanian (Upper Cretaceous) of Namoura, Lebanon. Journal of Systematic Palaeontology 1:227330.
Frickhinger, K. A. 1995. Fossil atlas, fishes. Mergus, Melle, Germany.
Friedman, M. 2009. Ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction. Proceedings of the National Academy of Sciences USA 106:52185223.
Friedman, M. 2010. Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous extinction. Proceedings of the Royal Society of London B 277:16751683.
Friedman, M. 2012. Parallel evolutionary trajectories underlie the origin of giant suspension-feeding whales and bony fishes. Proceedings of the Royal Society of London B 279:944951.
Friedman, M., Shimada, K., Martin, L. D., Everhart, M. J., Liston, J., Maltese, A., and Triebold, M.. 2010. 100-million-year dynasty of giant planktivorous bony fishes in the Mesozoic seas. Science 327:990993.
Gardiner, B. G., Maisey, J. G., and Littlewood, D. T. J.. 1996. Interrelationships of basal neopterygians. Pp. 117146 in M. L. J. Stiassny, L. R. Parenti, and G. D. Johnson, eds. Interrelationships of fishes. Academic Press, San Diego.
Gibson, S. 2016. Redescription and phylogenetic placement of †Hemicalypterus weiri Schaeffer, 1967 (Actinopterygii, Neopterygii) from the Triassic Chinle Formation, Southwestern United States: new insights into morphology, ecological niche, and phylogeny. PLoS ONE 11:e0163657.
Giles, S., Rogers, M., and Friedman, M.. 2016. Bony labyrinth morphology in early neopterygian fishes (Actinopterygii: Neopterygii). Journal of Morphology. doi: 10.1002/jmor.20551.
Gill, E. L. 1923. The Permian fishes of the genus Acentrophorus . Proceedings of the Zoological Society of London 93:1940.
Giordano, P.G., Succar, C. A., Codorniú, L., Cione, A. L., and Arratia, G.. 2017. Zurupleuropholis gen. nov. (Teleostei, Albian, Argentina), first pleuropholids from the Cretaceous of South America. Cretaceous Research. doi: 10.1016/j.cretres.2017.11.017.
Goatley, C. H. R., Bellwood, D. R., and Bellwood, O.. 2010. Fishes on coral reefs: changing roles over the past 240 million years. Paleobiology 36:415427.
Grande, L., and Bemis, W. E.. 1996. Interrelationships of Acipenseriformes, with comments on “Chondrostei.” Pp. 85115 in M. L. J. Stiassny, L. R. Parenti, and G. D. Johnson, eds. Interrelationships of fishes. Academic Press, San Diego.
Grande, L., and Bemis, W. E.. 1998. A comprehensive phylogenetic study of amiid fishes (Amiidae) based on comparative skeletal anatomy. An empirical search for interconnected patterns of natural history. Journal of Vertebrate Paleontology 18:1696.
Guinot, G., and Cavin, L.. 2015. “Fish” (Actinopterygii and Elasmobranchii) diversification patterns through deep time. Biological Reviews 25:23142318.
Hoegg, S., Brinkmann, H., Taylor, J. S., and Meyer, A.. 2004. Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. Journal of Molecular Evolution 59:190203.
Holm, S. 1979. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6:6570.
Hopkins, M. J., and Smith, A. B.. 2015. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution. Proceedings of the National Academy of Sciences USA 112:37583763.
Hurley, I. A., Mueller, R. L., Dunn, K. A., Schmidt, E. J., Friedman, M., Ho, R. K., Prince, V. E., Yang, Z., Thomas, M. G., and Coates, M. I.. 2007. A new time-scale for ray-finned fish evolution. Proceedings of the Royal Society of London B 274:489498.
Kerschbaumer, M., and Sturmbauer, C.. 2011. The utility of geometric morphometrics to elucidate pathways of cichlid fish evolution. International Journal of Evolutionary Biology 2011:290245.
Kim, H. M., Chang, M. M., Wu, F. X., and Kim, Y. H.. 2014. A new ichthyodectiform (Pisces, Teleostei) from the Lower Cretaceous of South Korea and its paleobiogeographic implication. Cretaceous Research 47:117130.
Kogan, I., and Licht, M.. 2013. A Belonostomus tenuirostris (Actinopterygii: Aspidorhynchidae) from the Late Jurassic of Kelheim (southern Germany) preserved with its last meal. Palaeontologische Zeitschrift 87:543548.
Kriwet, J., Poyato-Ariza, F. J., and Wenz, S. A.. 1999. A revision of the pycnodontid fish Coelodus subdiscus Wenz 1989, from the Early Cretaceous of Montsec (Lleida, Spain). Treballs del Museu de Geologia de Barcelona 8:3366.
Labandeira, C. C. 2005. The fossil record of insect extinction: new approaches and future directions. American Entomologist 51:1429.
Liston, J. 2008. A review of the characters of the edentulous pachycormiforms Leesichthys, Asthenocormus and Martillichthys nov. gen. Pp. 181–198 in G. Arratia, H.-P. Schultze, and M. V. H. Wilson, eds. Mesozoic fishes 4. Homology and phylogeny. Proceedings of the international meeting, Eichstatt, 1993. Verlag Dr. Friedrich Pfeil, Munich, Germany.
Lloyd, G. T., and Friedman, M.. 2013. A survey of palaeontological sampling biases in fishes based on the Phanerozoic record of Great Britain. Palaeogeography Palaeoclimatology Palaeoecology 372:517.
Maisey, J. G. 1994. Predator-prey relationships and trophic level reconstruction in a fossil fish community. Environmental Biology of Fishes 40:122.
Maisey, J. G., and Moody, J. M.. 2001. A review of the problematic extinct teleost fish Araripichthys, with a description of a new species from the Lower Cretaceous of Venezuela. American Museum Novitates 3324:127.
Marrama, G., Villier, B., Dalla Vecchia, F. M., and Carnevale, G.. 2016. A new species of Gladiopycnodus (Coccodontoidea, Pycnodontomorpha) from the Cretaceous of Lebanon provides new insights about the morphological diversification of pycnodont fishes through time. Cretaceous Research 61:3443.
McCord, C. L., and Westneat, M. W.. 2016. Evolutionary patterns of shape and functional diversification in the skull and jaw musculature of triggerfishes (Teleostei: Balistidae). Journal of Morphology 277:737752.
McCune, A. R., and Schaeffer, B.. 1986. Triassic and jurassic fishes patterns of diversity. Pp. 171–182 in K. Padian, (ed. The beginning of the age of dinosaurs: faunal change across the Triassic–Jurassic boundary. Symposium held in conjunction with the 44th annual meeting of the Society of Vertebrate Paleontology, Berkeley, California, USA, October 31, 1984. Cambridge University Press, Cambridge.
Meyer, A., and Van de Peer, Y.. 2005. From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). Bioessays 27:937945.
Murray, A. M., and Wilson, M. V.. 2009. A new Late Cretaceous macrosemiid fish (Neopterygii, Halecostomi) from Morocco, with temporal and geographical range extensions for the family. Palaeontology 52:429440.
Nelson, J. S., Grande, T. C., and Wilson, M. V.. 2016. Fishes of the world. Wiley, Hoboken, N.J.
Nursall, J. R. 1996. The phylogeny of pycnodont fishes. Pp. 125–152 in G. Arratia and V. Günter, eds. Mesozoic fishes. Systematics and paleoecology. Proceedings of the international meeting, Eichstatt, 1993. Verlag Dr. Friedrich Pfeil, Munich, Germany.
Nursall, J. R., and Capasso, L.. 2004. Gebrayelichthys (novum), an extraordinary genus of neopterygian fishes from the Cenomanian of Lebanon. Pp. 317–340 in G. Arratia and A. Tintori, eds. Mesozoic fishes 3. Systematics, paleoenvironments and biodiversity. Proceedings of the 3rd International Meeting, Serpiano, 2001. Verlag Dr. Friedrich Pfeil, Munich, Germany.
Oksanen, J., Guillaume, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, H. H., Szoecs, E., and Wagner, H.. 2016. vegan: community ecology package, Version 2.4–0.
Olsen, P. E. 1984. The skull and pectoral girdle of the parasemionotid fish Watsonulus eugnathoides from the Early Triassic Sakamena Group of Madagascar, with comments on the relationships of the holostean fishes. Journal of Vertebrate Paleontology 4:481499.
Olsen, P. E., and McCune, A. R.. 1991. Morphology of the Semionotus elegans species group from the Early Jurassic part of the Newark Supergroup of Eastern North America with comments on the family Semionotidae (Neopterygii). Journal of Vertebrate Paleontology 11:269292.
Patterson, C. 1973. Interrelationships of holosteans. Pp. 233305 in P. H. Greenwood, R. S. Miles, and C. Patterson, eds. Interrelationships of fishes. Academic Press, London.
Patterson, C. 1977. The contributions of paleontology to teleostean phylogeny. Pp. 579643 in M. K. Hecht, P. C. Goody, and B. M. Hecht, eds. Major patterns in vertebrate evolution. Plenum, New York.
Patterson, C. 1993a. An overview of the early fossil record of acanthomorphs. Bulletin of Marine Science 52:2959.
Patterson, C. 1993b. Osteichthyes: Teleostei. Pp. 3344 in M. Benton, ed. The fossil record 2. Chapman & Hall, London.
Patterson, C., and Rosen, D. E.. 1977. Review of ichthyodectiform and other mesozoic teleost fishes and the theory and practice of classifying fossils. Bulletin of the American Museum of Natural History 158:83172.
Pough, F. H., Heiser, J. B., and McFarland, W. N.. 1996. Vertebrate life, 4th ed. Prentice Hall, Upper Saddle River, N.J.
Poyato-Ariza, F. 2005. Pycnodont fishes: morphologic variation, ecomorphologic plasticity, and a new interpretation of their evolutionary history. Bulletin of the Kitakyushu Museum of Natural History and Human History, Series A (Natural History) 3:169184.
Poyato-Ariza, F. 2015. Studies on pycnodont fishes (i): evaluation of their phylogenetic position among actinopterygians. Rivista Italiana Di Paleontologia E Stratigrafia 121:329343.
Poyato-Ariza, F. J., and Martín-Abad, H.. 2016. The cretaceous in the evolutionary history of the Actinopterygii. Pp. 275286 in A. Khosla, and S. G. Lucas, eds. Cretaceous period: biotic diversity and biogeography. New Mexico Museum of Natural History and Science Bulletin, 71.
Poyato-Ariza, F. J., and Wenz, S.. 2002. A new insight into pycnodontiform fishes. Geodiversitas 24:139248.
Poyato-Ariza, F. J., and Wenz, S.. 2004. The new pycnodontid fish genus Turbomesodon and a revision of Macromesodon based on new material from the Lower Cretaceous of Las Hoyas, Cuenca, Spain. Pp. 341–378 in G. Arratia and A. Tintori, eds. Mesozoic fishes 3. Systematics, paleoenvironments and biodiversity. Proceedings of the 3rd International Meeting, Serpiano, 2001. Verlag Dr. Friedrich Pfeil, Munich, Germany.
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science 177:10651071.
Rayner, D. H. 1941. The structure and evolution of the holostean fishes. Biological Reviews 16:218237.
Rohlf, F. J. 2013. tpsDig2, Version 2.17. Department of Ecology and Evolution, SUNY Stony Brook, Stony Brook, N.Y.
Rohlf, F. J. 2014. tpsRelw, Version 1.54. Department of Ecology and Evolution, SUNY Stony Brook, Stony Brook, N.Y.
Romano, C., Kogan, I., Jenks, J., Jerjen, I., and Brinkmann, W.. 2012. Saurichthys and other fossil fishes from the late Smithian (Early Triassic) of Bear Lake County (Idaho, USA), with a discussion of saurichthyid palaeogeography and evolution. Bulletin of Geosciences 87:543570.
Romano, C., Koot, M. B., Kogan, I., Brayard, A., Minikh, A. V., Brinkmann, W., Bucher, H., and Kriwet, J.. 2016. Permian–Triassic Osteichthyes (bony fishes): diversity dynamics and body size evolution. Biological Reviews 91:106147.
Romer, A. S. 1966. Vertebrate paleontology. University of Chicago Press, Chicago.
Schaeffer, B. 1973. Interrelationships of chondrosteans. Pp. 207226 in P. H. Greenwood, R. S. Miles, and C. Patterson, eds. Interrelationships of fishes. Academic Press, London.
Schaeffer, B., and Patterson, C.. 1984. Jurassic fishes from the western United States, with comments on Jurassic fish distribution. American Museum Novitates 2796:186.
Schultze, H.-P., and Wiley, E. O.. 1984. The neopterygian Amia as a living fossil. Pp. 153159 in N. Eldredge, and S. M. Stanley, eds. Living fossils. Springer, New York.
Senn, D. G. 1996. Environments and functional anatomy of certain Mesozoic fishes. Pp. 551–154 in G. Arratia and V. Günter, eds. Mesozoic fishes. Systematics and paleoecology. Proceedings of the international meeting, Eichstatt, 1993. Verlag Dr. Friedrich Pfeil, Munich, Germany.
Sferco, E., Lopez-Arbarello, A., and Baez, A. M.. 2015. Phylogenetic relationships of dagger Luisiella feruglioi (Bordas) and the recognition of a new clade of freshwater teleosts from the Jurassic of Gondwana. BMC Evolutionary Biology 15:268.
Silva Santos, R. da. 1985. Araripichthys castilhoi novo gênero e especie de teleostei da Formaçao Santana, Chapada do Araripe, Brasil. In D. A. Campos, C. S. Ferreira, I. M. Brito, and C. F. Viana, eds. Coletânea de Trabalhos Paleontológicos, Série Geologia 27: 133–140. Ministerio das Minas e Energia. D.N.P.M., Rio de Janeiro.
Smithwick, F. M. 2015. Feeding ecology of the deep-bodied fish Dapedium (Actinopterygii, Neopterygii) from the Sinemurian of Dorset, England. Palaeontology 58:293311.
Stubbs, T. L., and Benton, M. J.. 2016. Ecomorphological diversifications of Mesozoic marine reptiles: the roles of ecological opportunity and extinction. Paleobiology 42:547573.
Sun, Z. Y., Tintori, A., Lombardo, C., and Jiang, D. Y.. 2016. New miniature neopterygians from the Middle Triassic of Yunnan Province, South China. Neues Jahrbuch Fur Geologie Und Palaontologie-Abhandlungen 282:135156.
Thies, D., and Waschkewitz, J.. 2015. Redescription of Dapedium pholidotum (Agassiz, 1832) (Actinopterygii, Neopterygii) from the Lower Jurassic Posidonia Shale, with comments on the phylogenetic position of Dapedium Leach, 1822. Journal of Systematic Palaeontology 14:339364.
Thomson, K. S. 1977. The pattern of diversification among fishes. In A. Hallam, ed. Developments in palaeontology and stratigraphy 5:377404. Elsevier, Amsterdam.
Tintori, A., Sun, Z. Y., Ni, P. G., Lombardo, C. Y., Jiang, D. Y., and Motani, R.. 2015. Oldest stem Teleostei from the late Ladinian (middle triassic) of southern China. Rivista Italiana Di Paleontologia E Stratigrafia 121:285296.
Viohl, G. 1990. Piscivorous fishes of the Solnhofen lithographic limestone. Pp. 287303 in A. J. Boucot, ed. Evolutionary paleobiology of behavior and coevolution. Elsevier, New York.
Wang, M., and Lloyd, G. T.. 2016. Rates of morphological evolution are heterogeneous in Early Cretaceous birds. Proceedings of the Royal Society of London B 283.
Wen, W., Zhang, Q.-Y., Hu, S.-X., Zhou, C.-Y., Xe, T., Huang, J.-Y., Chen, Z. Q., and Benton, M. J.. 2012. A new basal actinopterygian fish from the Anisian (Middle Triassic) of Luoping, Yunnan Province, Southwest China. Acta Palaeontologica Polonica 57:149160.
Wiley, E. O., and Schultze, H.-P.. 1984. Family Lepisosteida (gars) as living fossils. Pp. 160165 in N. Eldredge, and S. M. Stanley, eds. Living fossils. Springer, New York.
Woodward, C. J. 1890. A synopsis of the fossil fishes of the English Lower Oolites. Proceedings of the Geologists’ Association 11:285306.
Xu, G., and Wu, F.. 2012. A deep-bodied ginglymodian fish from the Middle Triassic of eastern Yunnan Province, China, and the phylogeny of lower neopterygians. Chinese Science Bulletin 57:111118.
Xu, G.-H., and Gao, K.-Q.. 2011. A new scanilepiform from the Lower Triassic of northern Gansu Province, China, and phylogenetic relationships of non-teleostean Actinopterygii. Zoological Journal of the Linnean Society 161:595612.
Xu, G.-H., Zhao, L.-J., Gao, K.-Q., and Wu, F.-X.. 2013. A new stem-neopterygian fish from the Middle Triassic of China shows the earliest over-water gliding strategy of the vertebrates. Proceedings of the Royal Society of London B 280:20122261.
Zelditch, M. L., Swiderski, D. L., and Sheets, H. D.. 2012. Geometric morphometrics for biologists: a primer, 2nd ed. Elsevier Academic Press, Burlington, Mass.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0094-8373
  • EISSN: 1938-5331
  • URL: /core/journals/paleobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 14
Total number of PDF views: 130 *
Loading metrics...

Abstract views

Total abstract views: 2029 *
Loading metrics...

* Views captured on Cambridge Core between 26th April 2018 - 23rd May 2018. This data will be updated every 24 hours.