Skip to main content
×
Home
    • Aa
    • Aa

The relationship between diet and body mass in terrestrial mammals

  • Silvia Pineda-Munoz (a1), Alistair R. Evans (a2) and John Alroy (a1)
Abstract
Abstract

Diet and body mass are highly important factors in mammalian ecology, and they have also proven to be powerful paleoecological indicators. Our previous research has proposed a new classification scheme for mammals with more dietary divisions that emphasizes the primary resource in a given diet. We analyzed a database summarizing the dietary preferences of 139 species of marsupial and placental terrestrial mammals (including 14 orders) and their average body masses in order to explore whether this new classification better highlights ecomorphological differences between species. Additionally, the dietary diversity of every species in the data set was quantified by applying the inverse Simpson index to stomach content percentages. We observed a decrease in maximum dietary diversity with increasing body mass. Having lower requirements for energy and nutrients per unit of body weight or ecological advantages such as larger home ranges allows larger mammals to feed on less nutritive feeding resources (i.e., structural plant material). Our results also suggest that body-size ranges are different across dietary specializations. Smaller mammals (<1 kg) are mainly insectivores, granivores, or mixed feeders, while bigger animals (>30 kg) are usually either carnivores or herbivores that feed specifically on grasses and leaves. The medium-size range (1–30 kg) is mostly composed of frugivorous species that inhabit tropical and subtropical rain forests. Thus, the near absence of medium-sized mammals in open environments such as savannas can be linked to the decreasing density of fruit trees needed to support a pure frugivorous diet year-round. In other words, seasonality of precipitation prevents species from specializing on a totally frugivorous diet. Our results suggest that this new classification scheme correlates well with body mass, one of the most studied morphological variables in paleoecology and ecomorphology. Therefore, the classification should serve as a useful basis for future paleoclimatological studies.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

J.Alroy 1998. Cope’s rule and the dynamics of body mass evolution in North American fossil mammals. Science 280:731734.

J.Alroy , P. L.Koch , and J. C.Zachos . 2000. Global climate change and North American mammalian evolution. Paleobiology 26:259288.

P.Andrews , J. M.Lord , and E. M. N.Evans . 1979. Patterns of ecological diversity in fossil and modern mammalian faunas. Biological Journal of the Linnean Society 11:177205.

F.Bartumeus , and J.Catalan . 2009. Optimal search behavior and classic foraging theory. Journal of Physics A 42:434002.

L. E.Beeman , and M. R.Pelton . 1980. Seasonal foods and feeding ecology of black bears in the Smoky Mountains. Bears: Their Biology and Management 4:141147.

R.Bro , and A. K.Smilde . 2014. Principal component analysis. Analytical Methods 6:28122831.

J. H.Brown , and P. F.Nicoletto . 1991. Spatial scaling of species composition: body masses of North American land mammals. American Naturalist 138:14781512.

G. P.Burness , J.Diamond , and T.Flannery . 2001. Dinosaurs, dragons, and dwarfs: the evolution of maximal body size. Proceedings of the National Academy of Sciences USA 98:1451814523.

C.Carbone , G. M.Mace , S. C.Roberts , and D. W.Macdonald . 1999. Energetic constraints on the diet of terrestrial carnivores. Nature 402:286288.

M.Clauss , A.Schwarm , S.Ortmann , W. J.Streich , and J.Hummel . 2007. A case of non-scaling in mammalian physiology? Body size, digestive capacity, food intake, and ingesta passage in mammalian herbivores. Comparative Biochemistry and Physiology Part A 148:249265.

M.Clauss , P.Steuer , D. W. H.Müller , D.Codron , and J.Hummel . 2013. Herbivory and body size: allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism. PLoS ONE 8:e68714.

C. P.Colon , and A.Campos-Arceiz . 2013. The impact of gut passage by binturongs (Arctictis binturong) on seed germination. Raffles Bulletin of Zoology 61:417421.

B.Demes , and N.Creel . 1988. Bite force, diet, and cranial morphology of fossil hominids. Journal of Human Evolution 17:657670.

M. W.Demment , and P. J.Van Soest . 1985. A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. American Naturalist 125:641672.

M.Fernández-Hernández , M. T.Alberdi , B.Azanza , P.Montoya , J.Morales , M.Nieto , and P.Peláez-Campomanes . 2006. Identification problems of arid environments in the Neogene–Quaternary mammal record of Spain. Journal of Arid Environments 66:585608.

D. O.Fisher , and C. R.Dickman . 1993. Diets of insectivorous marsupials in arid Australia: selection for prey type, size or hardness? Journal of Arid Environments 25:397410.

M.Fortelius , J.Eronen , J.Jernvall , L.Liu , D.Pushkina , J.Rinne , A.Tesakov , and I.Vislobokova . 2002. Fossil mammals resolve regional patterns of Eurasian climate change during 20 million years. Evolutionary Ecology Research 4:10051016.

T.Ganesh , and P.Davidar . 1999. Fruit biomass and relative abundance of frugivores in a rain forest of southern Western Ghats, India. Journal of Tropical Ecology 15:399413.

P. D.Gingerich 1989. New earliest Wasatchian mammalian fauna from the Eocene of northwestern Wyoming: composition and diversity in a rarely sampled high-floodplain assemblage. Museum of Paleontology, University of Michigan, Ann Arbor.

J.Gittleman 1985. Carnivore body size: ecological and taxonomic correlates. Oecologia 67:540554.

J. E.Hawes , and C. A.Peres . 2014. Ecological correlates of trophic status and frugivory in neotropical primates. Oikos 123:365377.

M. M.Humphries , D. W.Thomas , and D. L.Kramer . 2003. The role of energy availability in mammalian hibernation: a cost-benefit approach. Physiological and Biochemical Zoology 76:165179.

R. F.Kay 1984. On the use of anatomical features to infer foraging behavior in extinct primates. Pp. 2153 in J. Cant, and P. Rodman, eds. Adaptations for foraging in nonhuman primates. Columbia University Press, New York.

S.Legendre 1986. Analysis of mammalian communities from the late Eocene and Oligocene of southern France. Paleovertebrata, Montpellier 16:191212.

L.Liu , K.Puolamäki , J. T.Eronen , M. M.Ataabadi , E.Hernesniemi , and M.Fortelius . 2012. Dental functional traits of mammals resolve productivity in terrestrial ecosystems past and present. Proceedings of the Royal Society B 279:27932799.

R. H.MacArthur , and E. R.Pianka . 1966. On optimal use of a patchy environment. American Naturalist 100:603609.

Map of Life 2016. http://www.mol.org.

B. NMcLellan . 2011. Implications of a high-energy and low-protein diet on the body composition, fitness, and competitive abilities of black (Ursus americanus) and grizzly (Ursus arctos) bears. Canadian Journal of Zoology 89:546558.

K.Milton , and M. L.May . 1976. Body weight, diet and home range area in primates. Nature 259:459462.

D. M.Olson , E.Dinerstein , E. D.Wikramanayake , N. D.Burgess , G. V.Powell , E. C.Underwood , J. A.D’amico , I.Itoua , H. E.Strand , and J. C.Morrison . 2001. Terrestrial Ecoregions of the World: A New Map of Life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51:933938.

P.Palmqvist , D. R.Gröcke , A.Arribas , and R. A.Fariña . 2003. Paleoecological reconstruction of a lower Pleistocene large mammal community using biogeochemical (δ13C, δ15N, δ18O, Sr:Zn) and ecomorphological approaches. Paleobiology 29:205229.

O. L.Petchey , A. P.Beckerman , J. O.Riede , and P. H.Warren . 2008. Size, foraging, and food web structure. Proceedings of the National Academy of Sciences USA 105:41914196.

R. HPeters . 1986. The ecological implications of body size. Cambridge University Press, New York.

Pineda-Munoz 2015. Mutli-proxy dental morphology analysis: a new approach for inferring diet. Society of Vertebrate Paleontology 75th Annual Meeting. Dallas, Tex.

S.Pineda-Munoz , and J.Alroy . 2014. Dietary characterization of terrestrial mammals. Proceedings of the Royal Society B 281:1789.

S. A.Price , and S. S. B.Hopkins . 2015. The macroevolutionary relationship between diet and body mass across mammals. Biological Journal of the Linnean Society 115:173184.

G. H.Pyke , H. R.Pulliam , and E.Charnov . 1977. Optimal foraging: a selective review of theory and tests. Quarterly Review of Biology 52:137154.

P.Raia , F.Carotenuto , F.Passaro , D.Fulgione , and M.Fortelius . 2012. Ecological specialization in fossil mammals explains Cope’s rule. American Naturalist 179:328337.

K. EReed . 1998. Using large mammal communities to examine ecological and taxonomic structure and predict vegetation in extant and extinct assemblages. Paleobiology 24:384408.

J. G.Robinson , and K. H.Redford . 1986. Body size, diet, and population density of Neotropical forest mammals. American Naturalist 128:665680.

JRodríguez . 1999. Use of cenograms in mammalian palaeoecology. A critical review. Lethaia 32:331347.

T. WSchoener . 1989. Food webs: from the small to the large: the Robert H. MacArthur Award Lecture. Ecology 70:15591589.

C. C.Schwartz , and J. E.Ellis . 1981. Feeding ecology and niche separation in some native and domestic ungulates on the Shortgrass Prairie. Journal of Applied Ecology 18:343353.

E.Siemann , and J. H.Brown . 1999. Gaps in mammalian body size distributions reexamined. Ecology 80:27882792.

E. HSimpson . 1949. Measurement of diversity. Nature 163:688688.

F. A.Smith , and S. K.Lyons . 2011. How big should a mammal be? A macroecological look at mammalian body size over space and time. Philosophical Transactions of the Royal Society B 366:23642378.

F. A.Smith , S. K.Lyons , S. K. M.Ernest , K. E.Jones , D. M.Kaufman , T.Dayan , P. A.Marquet , J. H.Brown , and J. P.Haskell . 2003. Body mass of late Quaternary mammals. Ecology 84:34033403.

F. A.Smith , J. H.Brown , J. P.Haskell , S. K.Lyons , J.Alroy , E. L.Charnov , T.Dayan , B. J.Enquist , S. M.Ernest , and E. A.Hadly . 2004. Similarity of mammalian body size across the taxonomic hierarchy and across space and time. American Naturalist 163:672691.

P.Steuer , K.-H.Südekum , T.Tütken , D. W. H.Müller , J.Kaandorp , M.Bucher , M.Clauss , and J.Hummel . 2014. Does body mass convey a digestive advantage for large herbivores? Functional Ecology 28:11271134.

K. J.Travouillon , and S.Legendre . 2009. Using cenograms to investigate gaps in mammalian body mass distributions in Australian mammals. Palaeogeography, Palaeoclimatology, Palaeoecology 272:6984.

P. SUngar . 2010. Mammal teeth: origin, evolution, and diversity. Johns Hopkins University Press, Baltimore, Md.

J. AValverde . 1967. Estructura de una comunidad mediterránea de vertebrados terrestres. Consejo Superior de Investigaciones Científicas, Spain.

H.Wilman , J.Belmaker , J.Simpson , C.de la Rosa , M. M.Rivadeneira , and W.Jetz . 2014. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95:2027.

D. E.Wilson , and D. A. M.Reeder . 2005. Mammal species of the world: a taxonomic and geographic reference. Johns Hopkins University Press, Baltimore, Md.

E. O.Wilson , ed. 1988. Biodiversity. National Academies Press, Washington, D.C.

G. P.Wilson , A. R.Evans , I. J.Corfe , P. D.Smits , M.Fortelius , and J.Jernvall 2012. Adaptive radiation of multituberculate mammals before the extinction of dinosaurs. Nature 483:457460.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Paleobiology
  • ISSN: 0094-8373
  • EISSN: 1938-5331
  • URL: /core/journals/paleobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score