Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T19:18:49.630Z Has data issue: false hasContentIssue false

Early Paleocene tropical forest from the Ojo Alamo Sandstone, San Juan Basin, New Mexico, USA

Published online by Cambridge University Press:  12 September 2019

Andrew G. Flynn
Affiliation:
Department of Geosciences, Baylor University, Waco, Texas 76706, U.S.A. E-mail: Andrew_Flynn@Baylor.edu, Daniel_Peppe@Baylor.edu
Daniel J. Peppe
Affiliation:
Department of Geosciences, Baylor University, Waco, Texas 76706, U.S.A. E-mail: Andrew_Flynn@Baylor.edu, Daniel_Peppe@Baylor.edu

Abstract

Earliest Paleocene megafloras from North America are hypothesized to be low diversity and dominated by long-lived cosmopolitan species following the Cretaceous/Paleogene (K/Pg) mass extinction. However, megafloras used to develop this hypothesis are from the Northern Great Plains (NGP) of North America, and relatively little is known about floras from southern basins. Here, we present a quantitative analysis of an earliest Paleocene megaflora (<350 kyr after K/Pg boundary) from the Ojo Alamo Sandstone in the San Juan Basin (SJB), New Mexico. The megaflora, comprising 53 morphotypes, was dominated by angiosperms, with accessory taxa composed of pteridophytes, lycophytes, and conifers. Diversity analyses indicate a species-rich, highly uneven, and laterally heterogeneous flora. Paleoclimate estimates using multivariate and univariate methods indicate warm temperatures and relatively high precipitation consistent with a modern tropical seasonal forest.

When compared with contemporaneous floras from the Denver Basin (DB) of Colorado and the Williston Basin (WB) of North Dakota, the SJB flora had significantly higher species richness but lower evenness. Paleoclimate estimates from the SJB were 7–14°C warmer than the estimates for the DB and WB, indicating a shift from a temperate forest in the NGP to a tropical forest in the SJB. These results demonstrate the presence of a latitudinal floral diversity and paleoclimatic gradient during the earliest Paleocene in western North America. We hypothesize that the warm, wet conditions in the earliest Paleocene SJB drove rapid rates of speciation following the K/Pg boundary, resulting in a diverse and heterogeneous flora.

Type
Articles
Copyright
Copyright © The Paleontological Society. All rights reserved 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Data available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.j0k8370

References

Literature Cited

Anderson, R. Y. 1959: Cretaceous–Tertiary palynology, eastern side of the San Juan Basin, New Mexico. Ph.D. dissertation. Stanford University, Palo Alto, Calif., 166 p.Google Scholar
Ash, A. W., Ellis, B., Hickey, L. J., Johnson, K. R., and Wilf, P.. 1999. Manual of leaf architecture: morphological description and categorization of dicotyledons and net-veined monocotyledonous angiosperms. Smithsonian Institution, Washington, D.C., 67.Google Scholar
Baltz, E. H., Ash, S. R., and Anderson, R. Y.. 1966. History of nomenclature and stratigraphy of rocks adjacent to the Cretaceous–Tertiary boundary, western San Juan Basin, New Mexico. U.S. Geological Survey Professional Paper 524-D:1–23.Google Scholar
Barclay, R. S., Johnson, K. R., Betterton, W. J., and Dilcher, D. L.. 2003. Stratigraphy and megaflora of a K–T boundary section in the eastern Denver Basin, Colorado. Rocky Mountain Geology 38:4571.Google Scholar
Berger, W. H., and Parker, F. L.. 1970. Diversity of planktonic foraminifera in deep-sea sediments. Science 168:13451347.Google Scholar
Blonder, B., Royer, D. L., Johnson, K. R., Miller, I., and Enquist, B. J.. 2014. Plant ecological strategies shift across the Cretaceous–Paleogene boundary. PLoS Biology 12:19.Google Scholar
Bray, J. R., and Curtis, J. T.. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27:326349.Google Scholar
Brokaw, N., and Busing, R. T.. 2000. Niche versus chance and tree diversity in forest gaps. Trends in Ecology and Evolution 15:183188.Google Scholar
Brown, J. H. 2014. Why are there so many species in the tropics? Journal of Biogeography 41:8.Google Scholar
Brown, R. W. 1962. Paleocene flora of the Rock Mountains and Great Plains. United States. U.S. Geological Survey Professional Paper 375:1119.Google Scholar
Brusatte, S. L., Butler, R. J., Barrett, P. M., Carrano, M. T., Evans, D. C., Lloyd, G. T., Mannion, P. D., Norell, M. A., Peppe, D. J., Upchurch, P., and Williamson, T. E.. 2015. The extinction of the dinosaurs. Biological Reviews 90:628642.Google Scholar
Bullock, S. H., and Solis-Magallanes, J. A.. 1990. Phenology of canopy trees of a tropical deciduous forest in Mexico. Biotropica 22:2235.Google Scholar
Burnham, R. J., Wing, S. L., and Parker, G. G.. 1992. The reflection of deciduous forest communities in leaf litter; implications for autochthonous litter assemblages from the fossil record. Paleobiology 18:3049.Google Scholar
Cather, S. M. 2004. The Laramide Orogeny in central and northern New Mexico and southern Colorado. Pp. 203248 in Mack, G. H. and Giles, K. A., eds. The geology of New Mexico—a geologic history. New Mexico Geological Society Special Publication 11.Google Scholar
Chapin, C. E., and Cather, S. M.. 1983. Eocene tectonics and sedimentation in the Colorado Plateau–Rocky Mountain area. Arizona Geological Society Digest 14:173198.Google Scholar
Comer, E. E., Slingerland, R. L., Krause, J. M., Iglesias, A., Clyde, W. C., Raigemborn, M. S., and Wilf, P.. 2015. Sedimentary facies and depositional environments of diverse early Paleocene floras, north-central San Jorge Basin, Patagonia, Argentina. Palaios 30:553573.Google Scholar
Condit, R., Watts, K., Bohlman, S. A., Pérez, R., Foster, R. B., and Hubbell, S. P.. 2000. Quantifying the deciduousness of tropical forest canopies under varying climates. Journal of Vegetation Science 11:649658.Google Scholar
Connell, J. H. 1978. Diversity in tropical rain forests and coral reefs. Science 199:13021310.Google Scholar
Davis, A. J., Peppe, D. J., Atchley, S. C., Williamson, T. E., and Flynn, A. G.. 2016. Climate and landscape reconstruction of the Arroyo Chijuillita Member of the Nacimiento Formation, San Juan Basin, New Mexico: providing environmental context to early Paleocene mammal evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 463:2744.Google Scholar
Donovan, M. P., Iglesias, A., Wilf, P., Labandeira, C. C., and Cúneo, N. R.. 2016. Rapid recovery of Patagonian plant–insect associations after the end-Cretaceous extinction. Nature Ecology and Evolution 1:15.Google Scholar
Dunn, R. E. 2003. Correlation of leaf megafossil and palynological data with North American Land Mammal Ages from Paleocene strata of the Ferris and Hanna Formations, Hanna Basin, south-central, Wyoming. M.S. thesis. University of Wyoming, Laramie, Wyo.Google Scholar
Dupuy, B., Maitre, H. F., and Amsallem, I.. 1999. Tropical forest management techniques: a review of the sustainability of forest management practices in tropical countries. FAO Forestry Policy and Planning Division, Rome.Google Scholar
Ellis, B., and Johnson, K. R.. 2013. Comparison of leaf samples from mapped tropical and temperate forests: implications for interpretations of the diversity of fossil assemblages. Palaios 28:163177.Google Scholar
Ellis, B., Johnson, K. R., and Dunn, R. E.. 2003. Evidence for an in situ early Paleocene rainforest from Castle Rock, Colorado. Rocky Mountain Geology 38:73100.Google Scholar
Ellis, B., Daly, D. C., Hickey, L. J., Mitchell, J. D., Johnson, K. R., Wilf, P., and Wing, S. L.. 2009. Manual of leaf architecture. Comstock Publishing, Ithaca, N.Y., 190.Google Scholar
Fassett, J. E. 1985. Early Tertiary paleogeography and paleotectonics of the San Juan Basin, New Mexico and Colorado. Pp. 317334 in Flores, R. M. and Kaplan, S. S., eds. Cenozoic paleogeography of the west-central United States. Rocky Mountain Section Society of Economic Paleontologists and Mineralogists, Denver, Colo.Google Scholar
Fassett, J. E. 2009. New geochronologic and stratigraphic evidence confirms the Paleocene age of the dinosaur-bearing Ojo Alamo Sandstone and Animas Formation in the San Juan Basin, New Mexico and Colorado. Palaeontologia Electronica 12:146.Google Scholar
Foote, M. 1992. Rarefaction analysis of morphological and taxonomic diversity. Paleobiology 18:116.Google Scholar
Frederiksen, N. O. 1987. Tectonic and paleogeographic setting of a new latest Cretaceous floristic province in North America. Palaios 2:533542.Google Scholar
Givnish, T. J. 1999. On the causes of gradients in tropical tree diversity. Journal of Ecology 87:193210.Google Scholar
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4:19.Google Scholar
Haufler, C. H., Hooper, E. A., and Therrien, J. P.. 2000. Modes and mechanisms of speciation in pteridophytes: implications of contrasting patterns in ferns representing temperate and tropical habitats. Plant Species Biology 15:223236.Google Scholar
Hickey, L. J. 1980. Paleocene stratigraphy and flora of the Clark's Fork Basin. Pp. 33–49 in P. D. Gingerich, ed. Early Cenozoic paleontology and stratigraphy of the Bighorn Basin, Wyoming: 1880–1980. University of Michigan Papers on Paleontology 24.Google Scholar
Huff, P. M., Wilf, P., and Azumah, E. J.. 2003. Digital future for paleoclimate estimation from fossil leaves? Preliminary results. Palaios 18:266274.Google Scholar
Iglesias, A., Wilf, P., Johnson, K. R., Zamuner, A. B., Cúneo, N. R., Matheos, S. D., and Singer, B. S.. 2007. A Paleocene lowland macroflora from Patagonia reveals significantly greater richness than North American analogs. Geology 35:947950.Google Scholar
Johnson, K. R. 1989. High-resolution megafloral biostratigraphy spanning the Cretaceous–Tertiary boundary in the northern Great Plains. Ph.D. dissertation, Yale University, New Haven, Conn.Google Scholar
Johnson, K. R. 2002. Megaflora of the Hell Creek and lower Fort Union Formation in the western Dakotas: vegetational response to climate change, the Cretaceous–Tertiary boundary event, and rapid marine transgression. Pp. 329–391 in J. H. Hartman, K. R. Johnson, and D. J. Nichols, eds. The Hell Creek Formation and the Cretaceous–Tertiary boundary in the Northern Great Plains: an integrated continental record of the end of the Cretaceous. Geological Society of America Special Paper 361.Google Scholar
Johnson, K. R., and Ellis, B.. 2002. A tropical rainforest in Colorado 1.4 million years after the Cretaceous–Tertiary boundary. Science 296:23792383.Google Scholar
Johnson, K. R., and Hickey, L. J.. 1990. Megafloral change across the Cretaceous/Tertiary boundary in the northern Great Plains and Rocky Mountains, U.S.A. Geological Society of America Special Papers 247:433444.Google Scholar
Johnson, K. R., Reynolds, M. L., Werth, K. W., and Thomasson, J. R.. 2003. Overview of the Late Cretaceous, early Paleocene, and early Eocene megafloras of the Denver Basin, Colorado. Rocky Mountain Geology 38:101120.Google Scholar
Kraft, N. J., Comita, L. S., Chase, J. M., Sanders, N. J., Swenson, N. G., Crist, T. O., Stegen, J. C., Vellend, M., Boyle, B., and Anderson, M. J.. 2011. Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science 333:17551758.Google Scholar
Lavorel, S., McIntyre, S., Landsberg, J., and Forbes, T. D. A.. 1997. Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends in Ecology and Evolution 12:474478.Google Scholar
Lehman, T. M., and Wheeler, E. A.. 2009. New Late Cretaceous and Paleocene dicot woods of Big Bend National Park, Texas and review of Cretaceous wood characteristics. IAWA Journal 30:293318.Google Scholar
Leigh, E. G., Davidar, P., Dick, C. W., Puyravaud, J.-P., Terborgh, J., ter Steege, H., and Wright, S. J.. 2004. Why do some tropical forests have so many species of trees? Biotropica 36:447473.Google Scholar
Lesquereux, L. 1878. Contributions to the fossil flora of the Western Territories. Part II, the Tertiary flora. U.S. Geological Survey of the Territories 7:366.Google Scholar
Lindsay, E. H., Jacobs, L. L., and Butler, R. F.. 1978. Biostratigraphy and magnetostratigraphy of Paleocene terrestrial deposits, San Juan Basin, New Mexico. Geology 6:425429.Google Scholar
Liu, Y.-J., Arens, N. C., and Li, C.-S.. 2007. Range change in Metasequoia: relationship to palaeoclimate. Botanical Journal of the Linnean Society 154:115127.Google Scholar
Magurran, A. E. 2004. Measuring biological diversity. Blackwell, Malden, Mass.Google Scholar
Manchester, S. R., and Hickey, L. J.. 2007. Reproductive and vegetative organs of Browniea gen. n. (Nyssaceae) from the Paleocene of North America. International Journal of Plant Sciences 168:229249.Google Scholar
Marcot, J. D., Fox, D. L., and Niebuhr, S. R.. 2016. Late Cenozoic onset of the latitudinal diversity gradient of North American mammals. Proceedings of the National Academy of Sciences USA 113:71897194.Google Scholar
Margalef, R. 1958. Information theory in ecology. General Systems 3:3671.Google Scholar
Mason, I. P. 2013. 40Ar/39Ar chronostratigraphy of late Cretaceous early Paleocene rocks of the San Juan Basin, NM. M.S. thesis. New Mexico Institute of Mining and Technology, Socorro, N.Mex.Google Scholar
McIver, E. E. 1999. Paleobotanical evidence for ecosystem disruption at the Cretaceous–Tertiary boundary from Wood Mountain, Saskatchewan, Canada. Canadian Journal of Earth Sciences 36:775789.Google Scholar
McIver, E. E., and Basinger, J. F.. 1993. Flora of the Ravenscrag Formation (Paleocene), southwestern Saskatchewan, Canada. Palaeontographica Canadiana 10.Google Scholar
Mehltreter, K., Walker, L. R., and Sharpe, J. M.. 2010. Fern ecology. Cambridge University Press, Cambridge, 474.Google Scholar
Miall, A. D. 2010. Alluvial deposits. Pp. 105137 in James, N. P. and Darlrymple, R. W., eds. Facies models 4. Geologic Association of Canada, St. John's, Newfoundland, and Labrador, Canada.Google Scholar
Miller, I. M., Brandon, M. T., and Hickey, L. J.. 2006. Using leaf margin analysis to estimate the mid-Cretaceous (Albian) paleolatitude of the Baja BC block. Earth and Planetary Science Letters 245:95114.Google Scholar
Mohr, B. A. R., Bernardes-de-Oliveira, M. E. C., Loveridge, R., Pons, D., Sucerquia, P. A., and Castro-Fernandes, M. C.. 2015. Ruffordia goeppertii (Schizaeales, Anemiaceae)—a common fern from the Lower Cretaceous Crato Formation of northeast Brazil. Cretaceous Research 54:1726.Google Scholar
Molino, J.-F. 2001. Tree diversity in tropical rain forests: a validation of the intermediate disturbance hypothesis. Science 294:17021704.Google Scholar
Mooney, H. A., Bullock, S. H., and Medina, E.. 1995. Introduction. Pp. 19 in Bullock, S. H., Mooney, H. A., and Medina, E., eds. Seasonally dry tropical forests. Cambridge University Press, Cambridge.Google Scholar
Murphy, P. G., and Lugo, A. E.. 1986. Ecology of tropical dry forest. Annual Review of Ecology and Systematics 17:6788.Google Scholar
Newberry, J. S. 1868. Notes on the later extinct floras of North America, with descriptions of some new species of fossil plants from the Cretaceous and Tertiary strata. Lyceum Natural History New York Annals 9:176.Google Scholar
Nichols, D. J. 2003. Palynostratigraphic framework for age determination and correlation of the nonmarine lower Cenozoic of the Rocky Mountains and Great Plains region. Pp. 107134 in Raynolds, R. G. and Flores, R. M., eds. Cenozoic systems of the Rocky Mountain region. Rocky Mountain Section of the Society for Sedimentary Geology (SEPM), Denver, Colo.Google Scholar
Nichols, D. J., and Johnson, K. R.. 2008. Plants and the K–T boundary. Cambridge University Press, New York.Google Scholar
Nichols, D. J., Fleming, R. F., and Frederiksen, N. O.. 1990. Palynological evidence of effects of the terminal Cretaceous event on terrestrial floras in western North America. Pp. 351364 in Kauffman, E. G. and Walliser, O. H., eds. Extinction events in earth history, Vol. 30. Springer-Verlag, Berlin.Google Scholar
North, G. R., Cahalan, R. F., and Coakly, J. A. Jr. 1981. Energy balance climate models. Reviews of Geophysics 19:91121.Google Scholar
O'Sullivan, R. B., Repenning, C. A., Beaumont, E. C., and Page, H. G.. 1972. Stratigraphy of the Cretaceous rocks and the Tertiary Ojo Alamo Sandstone, Navajo and Hopi Indian Reservations, Arizona, New Mexico, and Utah. United States Geological Survey Professional Paper 521-E:1–65.Google Scholar
Ogg, J. G., 2012, Geomagnetic polarity timescale. Pp. 85113 in Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G., eds., The geologic timescale. Elsevier Science, Oxford.Google Scholar
Peppe, D. J. 2010. Megafloral change in the early and middle Paleocene in the Williston Basin, North Dakota, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 298:224234.Google Scholar
Peppe, D. J., Hickey, L. J., Miller, I. M., and Green, W. A.. 2008. A morphotype catalogue, floristic analysis and stratigraphic description of the Aspen Shale flora (Cretaceous–Albian) of southwestern Wyoming. Bulletin of the Peabody Museum of Natural History 49:181208.Google Scholar
Peppe, D. J., Royer, D. L., Cariglino, B., Oliver, S. Y., Newman, S., Leight, E., Enikolopov, G., Fernandez-Burgos, M., Herrera, F., Adams, J. M., Correa, E., Currano, E. D., Erickson, J. M., Hinojosa, L. F., Hoganson, J. W., Iglesias, A., Jaramillo, C. A., Johnson, K. R., Jordan, G. J., Kraft, N. J. B., Lovelock, E. C., Lusk, C. H., Niinemets, Ü., Peñuelas, J., Rapson, G., Wing, S. L., and Wright, I. J.. 2011. Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytologist 190:724739.Google Scholar
Peppe, D. J., Heizler, M., Williamson, T. E., Mason, I. P., Brusatte, S., Weil, A., and Secord, R.. 2013. New age constraints on Late Cretaceous through Early Paleocene age rocks in the San Juan Basin, New Mexico. Geologic Society of America Abstracts with Programs 45(7):290.Google Scholar
Peppe, D. J., Baumgartner, A., Flynn, A. G., and Blonder, B.. 2018. Reconstructing paleoclimate and paleoecology using fossil leaves. Pp. 289317 in Croft, D. A., Su, D., and Simpson, S., eds. Methods in paleoecology: reconstructing Cenozoic terrestrial environments and ecological communities. Springer, Dordrecht, Netherlands.Google Scholar
Phillips, O., and Miller, J. S.. 2002. Global patterns of plant diversity: Alwyn H. Gentry's forest transect data set. Missouri Botanical Garden Press, St. Louis, Mo.Google Scholar
Pielou, E. C. 1969. An introduction to mathematical ecology. Wiley, New York.Google Scholar
Pittermann, J., Stuart, S. A., Dawson, T. E., and Moreau, A.. 2012. Cenozoic climate change shaped the evolutionary ecophysiology of the Cupressaceae conifers. Proceedings of the National Academy of Sciences USA 109:96479652.Google Scholar
Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J., and Villar, R.. 2009. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist 182:565588.Google Scholar
Powell, J. S. 1973. Paleontology and sedimentation models of the Kimbeto Member of the Ojo Alamo Sandstone. Pp. 111122 in Fassett, J. E., ed. Cretaceous and Tertiary rocks of the southern Colorado Plateau: a memoir of the Four Corners Geological Society. Four Corners Geological Society, Durango, CO.Google Scholar
Pyke, C. R., Condit, R., Aguilar, S., and Lao, S.. 2001. Floristic composition across a climatic gradient in a neotropical lowland forest. Journal of Vegetation Science 12:553566.Google Scholar
Raup, D. M., and Crick, R. E.. 1979. Measurement of faunal similarity in paleontology. Journal of Paleontology 53:12131227.Google Scholar
Reich, P. B., Walters, M. B., and Ellsworth, D. S.. 1992. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecological Monographs 62:365392.Google Scholar
Riva, E. G. de la, Olmo, M., Poorter, H., Ubera, J. L., and Villar, R.. 2016. Leaf mass per area (LMA) and its relationship with leaf structure and anatomy in 34 Mediterranean woody species along a water availability gradient. PLoS ONE 11:118.Google Scholar
Royer, D. L., Wilf, P., Janesko, D. A., Kowalski, E. A., and Dilcher, D. L.. 2005. Correlations of climate and plant ecology to leaf size and shape: potential proxies for the fossil record. American Journal of Botany 92:11411151.Google Scholar
Royer, D. L., Sack, L., Wilf, P., Lusk, C. H., Jordan, G. J., Niinemets, Ü., Wright, I. J., Westoby, M., Cariglino, B., Coley, P. D., Cutter, A. D., Johnson, K. R., Labandeira, C. C., Moles, A. T., Palmer, M. B., and Valladares, F.. 2007. Fossil leaf economics quantified: calibration, Eocene case study, and implications. Paleobiology 33:574589.Google Scholar
Royer, D. L., Miller, I. M., Peppe, D. J., and Hickey, L. J.. 2010. Leaf economic traits from fossils support a weedy habit for early angiosperms. American Journal of Botany 97:438445.Google Scholar
Schulte, P., Alegret, L., Arenillas, I., Arz, J. A., Barton, P. J., Bown, P. R., Bralower, T. J., Christeson, G. L., Claeys, P., Cockell, C. S., Collins, G. S., Deutsch, A., Goldin, T. J., Goto, K., Grajales-Nishimura, J. M., Grieve, R. A. F., Gulick, S. P. S., Johnson, K. R., Kiessling, W., Koeberl, C., Kring, D. A., MacLeod, K. G., Matsui, T., Melosh, J., Montanari, A., Morgan, J. V., Neal, C. R., Nichols, D. J., Norris, R. D., Pierazzo, E., Ravizza, G., Rebolledo-Vieyra, M., Reimold, W. U., Robin, E., Salge, T., Speijer, R. P., Sweet, A. R., Urrutia-Fucugauchi, J., Vajda, V., Whalen, M. T., and Willumsen, P. S.. 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous–Paleogene boundary. Science 327:12141218.Google Scholar
Sikkink, P. G. L. 1987. Lithofacies relationships and depositional environment of the Tertiary Ojo Alamo Sandstone and related strata, San Juan Basin, New Mexico and Colorado. Geological Society of America Special Paper 209:81104.Google Scholar
Stromberg, J. C. 2001. Biotic integrity of Platanus wrightii riparian forests in Arizona: first approximation. Forest Ecology and Management 142:251266.Google Scholar
Sullivan, R. M., and Lucas, S. G.. 2003. The Kirtlandian, a new land vertebrate “age” for the Late Cretaceous of Western North America. Guidebook of the New Mexico Geological Society 54:369377.Google Scholar
Sullivan, R. M., Lucas, S. G., and Braman, D. R.. 2005. Dinosaurs, pollen, and the Cretaceous–Tertiary boundary in the San Juan Basin. Guidebook of the New Mexico Geological Society 56:395407.Google Scholar
Torsvik, T. H., Müller, R. D., Van der Voo, R., Steinberger, B., and Gaina, C.. 2008. Global plate motion frames: toward a unified model. Reviews of Geophysics 46:144.Google Scholar
Tralau, H. 1967. The phytogeographic evolution of the genus Ginkgo L. Botaniska Notiser 120:409422.Google Scholar
Tryon, R. M., and Tryon, A. F.. 1982. Ferns and allied plants: with special reference to tropical America. Springer-Verlag, New York.Google Scholar
Vajda, V., and Bercovici, A.. 2014. The global vegetation pattern across the Cretaceous–Paleogene mass extinction interval: a template for other extinction events. Global and Planetary Change 122:2949.Google Scholar
Webb, L. J. 1959. A physiognomic classification of Australian rain forests. Journal of Ecology 47:551570.Google Scholar
Weissmann, G. S., Hartley, A. J., Scuderi, L. A., Nichols, G. J., Davidson, S. K., Owen, A., Atchley, S. C., Bhattacharyya, P., Chakraborty, T., Ghosh, P., Michel, L., and Tabor, N. J.. 2013. Prograding distributive fluvial systems: geomorphic models and ancient examples. Pp. 131147 in Driese, S. G. and Nordt, L. C., eds. New frontiers in paleopedology and terrestrial paleoclimatology. SEPM Special Publication 104.Google Scholar
Wheeler, E. A., McClammer, J., and LaPasha, C. A.. 1995. Similarities and differences in dicotyledonous woods from the Cretaceous and Paleocene—San Juan Basin, New Mexico, USA. IAWA Journal 16:223254.Google Scholar
Whittaker, R. H. 1975. Communities and ecosystems. Macmillan, New York, 158.Google Scholar
Wilf, P. 1997. When are leaves good thermometers? A new case for leaf margin analysis. Paleobiology 23:373390.Google Scholar
Wilf, P., and Johnson, K. R.. 2004. Land plant extinction at the end of the Cretaceous: a quantitative analysis of the North Dakota megafloral record. Paleobiology 30:347368.Google Scholar
Wilf, P., Wing, S. L., Greenwood, D. R., and Greenwood, C. L.. 1998. Using fossil leaves as paleoprecipitation indicators: an Eocene example. Geology 26:203206.Google Scholar
Wilf, P., Labandeira, C. C., Johnson, K. R., and Ellis, B.. 2006. Decoupled plant and insect diversity after the end-Cretaceous extinction. Science 313:11121115.Google Scholar
Williamson, T. E. 1996. The beginning of the age of mammals in the San Juan Basin, New Mexico: biostratigraphy and evolution of Paleocene mammals of the Nacimiento Formation. Ph.D. dissertation. University of New Mexico, Albuquerque.Google Scholar
Williamson, T. E., and Lucas, S. G.. 1992. Stratigraphy and mammalian biostratigraphy of the Paleocene Nacimiento Formation, southern San Juan Basin, New Mexico. New Mexico Geological Society Guidebook 43:265296.Google Scholar
Williamson, T. E., and Weil, A.. 2008. Metatherian mammals from the Naashoibito Member, Kirtland Formation, San Juan Basin, New Mexico and their biochronologic and paleobiogeographic significance. Journal of Vertebrate Paleontology 28:803815.Google Scholar
Williamson, T. E., Nichols, D. J., and Weil, A.. 2008. Paleocene palynomorph assemblages from the Nacimiento Formation, San Juan Basin, New Mexico, and their biostratigraphic significance. New Mexico Geology 30:311.Google Scholar
Wing, S. L., Alroy, J., and Hickey, L. J.. 1995. Plant and mammal diversity in the Paleocene to early Eocene of the Bighorn Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 115:117155.Google Scholar
Wolfe, J. A., and Upchurch, G. R.. 1987. Leaf assemblages across the Cretaceous–Tertiary boundary in the Raton Basin, New Mexico and Colorado. Proceedings of the National Academy USA 84:50965100.Google Scholar
Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., Midgley, J. J., Navas, M.-L., Niinemets, U., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V. I., Roumet, C., Thomas, S. C., Tjoelker, M. G., Veneklaas, E. J., and Villar, R.. 2004. The worldwide leaf economics spectrum. Nature 428:821827.Google Scholar
Yoshifuji, N., Kumagai, T., Tanaka, K., Tanaka, N., Komatsu, H., Suzuki, M., and Tantasirin, C.. 2006. Inter-annual variation in growing season length of a tropical seasonal forest in northern Thailand. Forest Ecology and Management 229:333339.Google Scholar
Ziegler, A. M., Rees, P. M., Rowley, D. B., Bekker, A., Qing, L., and Hulver, M. L.. 1996. Mesozoic assembly of Asia: constraints from fossil floras, tectonics, and paleomagnetism. Pp. 371400 in Yin, A. and Harrison, M., eds. The tectonic evolution of Asia. Cambridge University Press, Cambridge.Google Scholar