Skip to main content
×
Home
    • Aa
    • Aa

Marine life in a greenhouse world: cephalopod biodiversity and biogeography during the early Late Cretaceous

  • Margaret M. Yacobucci (a1)
Abstract
Abstract

Two end-member models are proposed to explain marine biotic responses to greenhouse conditions. Global warming and increasing sea level may: (1) promote dispersal of marine species, leading to larger geographic ranges and decreased speciation and biodiversity; or (2) result in formation of isolated epicontinental basins that host endemic radiations, leading to smaller geographic ranges and increased speciation and biodiversity. The Cenomanian–Turonian (C–T) interval, marked by greenhouse warming, sea-level rise, ocean anoxia, and biotic turnover, presents an opportunity to test these two end-member models. In particular, how cephalopods responded to these global changes has not been clear. A global database of 7262 cephalopod occurrences was used to evaluate biodiversity changes through the C–T interval. Both species- and genus-level diversity peaked in the late Cenomanian. The global diversity drop across the C/T boundary was modest; rather, diversity was low during the middle Cenomanian and middle Turonian, times of brief cooling. Regional variations in diversity responses may reflect the degree and timing of environmental perturbations within different oceanographic settings. Surprisingly, cephalopod faunas in the European Platform, Western Interior, and South Atlantic all shifted equatorward across the C/T boundary, whereas other regions saw no change in latitudinal distributions. Global generic geographic ranges did not change through the C–T interval, but the percentage of cosmopolitan genera did increase significantly across the C/T, both globally and within the Western Interior and Europe, whereas cosmopolitans dropped in the Pacific and South Atlantic. Neither end-member model for biodiversity change in a greenhouse world is supported for C–T cephalopods, as diversity increased without an associated increase in geographic range. It may be that sea-level rise and global warming led to both endemic radiations in epicontinental basins and an increase in cosmopolitan taxa in some regions, demonstrating the importance of combining global and regional-scale analyses.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

M. A. Arthur , W. E. Dean , and L. M. Pratt . 1988. Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary. Nature 335:714717.

R. A Berner . 1994. GEOCARB II: a revised model for atmospheric CO2 over Phanerozoic time. American Journal of Science 294:5691.

R. A. Berner , and Z. Kothavala . 2001. GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science 301:182204.

K. L. Bice , and R. D. Norris . 2002. Possible atmospheric CO2 extremes of the Middle Cretaceous (late Albian–Turonian). Paleoceanography 17:1070.

K. L. Bice , D. Birgel , P. A. Meyers , K. A. Dahl , K.-U. Hinrichs , and R. D. Norris . 2006. A multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric CO2 concentrations. Paleoceanography 21:PA2002.

A. R. Bowman , and T. J. Bralower . 2005. Paleoceanographic significance of high-resolution carbon isotope records across the Cenomanian–Turonian boundary in the Western Interior and New Jersey coastal plain, USA. Marine Geology 217:305321.

T. J Bralower . 1988. Calcareous nannofossil biostratigraphy and assemblages of the Cenomanian–Turonian boundary interval: implications for the origin and timing of ocean anoxia. Paleoceanography 3:275316.

L. J. Clarke , and H. C. Jenkyns . 1999. New oxygen isotope evidence for long-term Cretaceous climatic change in the Southern Hemisphere. Geology 27:699702.

C. Deutsch , A. Ferrell , B. Seibel , H.-O. Pörtner , and R. B. Huey . 2015. Climate change tightens a metabolic constraint on marine habitats. Science 348:11321135.

Z. A. Doubleday , T. A. A. Prowse , A. Arkhipkin , G J. Pierce , J. Semmens , M. Steer , S. C. Leporati , S. Lourenço , A. Quetglas , W. Sauer , and B. M. Gillanders . 2016. Global proliferation of cephalopods. Current Biology 26:R387R407.

W. P Elder . 1989. Molluscan extinction patterns across the Cenomanian–Turonian boundary in the western interior of the United States. Paleobiology 15:299320.

K. Elderbak , R. M. Leckie , and N. E. Tibert . 2014. Paleoenvironmental and paleoceanographic changes across the Cenomanian–Turonian Boundary Event (Oceanic Anoxic Event 2) as indicated by foraminiferal assemblages from the eastern margin of the Cretaceous Western Interior Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 413:2948.

J. W. Eleson , and T. J. Bralower . 2005. Evidence of changes in surface water temperature and productivity at the Cenomanian/Turonian Boundary. Micropaleontology 51:309334.

M Foote . 2014. Environmental controls on geographic range size in marine animal genera. Paleobiology 40:440458.

M. Foote , K. A. Ritterbush , and A. I. Miller . 2016. Geographic ranges of genera and their constituent species: structure, evolutionary dynamics, and extinction resistance. Paleobiology 42:269288.

A. Forster , S. Schouten , M. Baas , and J. S. Sinninghe Damsté . 2007a. Mid-Cretaceous (Albian-Santonian) sea surface temperature record of the tropical Atlantic Ocean. Geology 35:919922.

A. Forster , S. Schouten , K. Moriya , P. A. Wilson , and J. S. Sinninghe Damsté . 2007b. Tropical warming and intermittent cooling during the Cenomanian/Turonian Oceanic Anoxic Event 2: sea surface temperature from the equatorial Atlantic. Paleoceanography 22:114.

O. Friedrich , R. D. Norris , and J. Erbacher . 2012. Evolution of middle to Late Cretaceous oceans—a 55 m.y. record of Earth’s temperature and carbon cycle. Geology 40:107110.

A. S. Gale , H. C. Jenkyns , W. J. Kennedy , and R. M. Corfield . 1993. Chemostratigraphy versus biostratigraphy: data from around the Cenomanian–Turonian boundary. Journal of the Geological Society, London 150:2932.

A. S. Gale , A. B. Smith , N. E. A. Monks , J. A. Young , A. Howard , D. W. Wray , and J. M. Huggett . 2000. Marine biodiversity through the Late Cenomanian–Early Turonian: palaeoceanographic controls and sequence stratigraphic biases. Journal of the Geological Society, London 157:745757.

F. Giraud , S. Reboulet , J. F. Deconinck , M. Martinez , A. Carpentier , and C. Bréziat . 2013. The Mid-Cenomanian Event in southeastern France: evidence from palaeontological and clay mineralogical data. Cretaceous Research 46:4358.

J. M. Hancock , and E. G. Kauffman . 1979. The great transgressions of the Late Cretaceous. Journal of the Geological Society, London 136:175186.

B. U. Haq , J. Hardenbol , and P. R. Vail . 1987. Chronology of fluctuating sea levels since the Triassic (250 million years ago to present). Science 235:11561167.

P. J Harries . 1993. Dynamics of survival following the Cenomanian–Turonian (Upper Cretaceous) mass extinction event. Cretaceous Research 14:563583.

P. J. Harries , and C. T. S. Little . 1999. The early Toarcian (Early Jurassic) and the Cenomanian–Turonian (Late Cretaceous) mass extinctions: similarities and contrasts. Palaeogeography, Palaeoclimatology, Palaeoecology 154:3966.

T Hasegawa . 1997. Cenomanian–Turonian carbon isotope events recorded in terrestrial organic matter from northern Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 130:251273.

W. W. Hay 2008. Evolving ideas about the Cretaceous climate and ocean circulation. Cretaceous Research 29:725753.

A. B. Herman , and R. A. Spicer . 1996. Paleobotanical evidence for a warm Cretaceous Arctic Ocean. Nature 380:330333.

H. Hirano , S. Toshimitsu , T. Matsumoto , and K. Takahashi . 2000. Changes in Cretaceous ammonoid diversity and marine environments of the Japanese Islands. Pp. 145154 in H. Okada, and N. J. Mateer, eds. Cretaceous Environments of Asia. Elsevier, Amsterdam.

S. M Holland . 2012. Sea-level change and the area of shallow marine habitat: implications for marine biodiversity. Paleobiology 38:205217.

S. M. Holland , and M. Christie . 2013. Changes in area of shallow siliciclastic marine habitat in response to sediment deposition: implications for onshore-offshore paleobiologic patterns. Paleobiology 39:511524.

B. T. Huber , D. A. Hodell , and C. P. Hamilton . 1995. Middle–Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients. GSA Bulletin 107:11641191.

B. T. Huber , R. D. Norris , and K. G. MacLeod . 2002. Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology 30:123126.

Y. Ikeda , and R. Wani . 2012. Different modes of migration within Late Cretaceous ammonoids in northwestern Hokkaido, Japan: evidence from the analyses of shell whorls. Journal of Paleontology 86:605615.

E. A Jagt-Yazykova 2012. Ammonite faunal dynamics across bio-events during the mid- and Late Cretaceous along the Russian Pacific coast. Acta Palaeontologica Polonica 57:737748.

I. Jarvis , G. A. Carson , M. K. E. Cooper , M. B. Hart , P. Leary , B. A. Tocher , D. Horne , and A. Rosenfeld . 1988. Microfossil assemblages and the Cenomanian–Turonian (Late Cretaceous) oceanic anoxic event. Cretaceous Research 9:3103.

I. Jarvis , A. S. Gale , H. C. Jenkyns , and M. A. Pearce . 2006. Secular variation in Late Cretaceous carbon isotopes: a new δ13C carbonate reference curve for the Cenomanian–Campanian (99.6–70.6 Ma). Geological Magazine 143:561608.

I. Jarvis , J. S. Lignum , D. R. Gröcke , H. C. Jenkyns , and M. A. Pearce . 2011. Black shale deposition, atmospheric CO2 drawdown, and cooling during the Cenomanian–Turonian Oceanic Anoxic Event. Paleoceanography 26:PA3201.

H. C Jenkyns . 1980. Cretaceous anoxic events: from continents to oceans. Journal of the Geological Society, London 137:171188.

H. C Jenkyns 2003. Evidence for rapid climate change in the Mesozoic–Palaeogene greenhouse world. Philosophical Transactions of the Royal Society of London A 361:18851916.

H. C Jenkyns 2010. Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems 11:Q03004.

H. C. Jenkyns , A. J. Dickson , M. Ruhl , and S. H. J. M. Van Den Boorn . 2017. Basalt-seawater interaction, the Plenus Cold Event, enhanced weathering and geochemical change: deconstructing Oceanic Anoxic Event 2 (Cenomanian–Turonian, Late Cretaceous). Sedimentology 64:1643.

K. Kaiho , and T. Hasegawa . 1994. End-Cenomanian benthic foraminiferal extinctions and oceanic dysoxic events in the northwestern Pacific Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 111:2943.

K. Kaiho , M. Katabuchi , M. Oba , and M. Lamolda . 2014. Repeated anoxia-extinction episodes progressing from slope to shelf during the latest Cenomanian. Gondwana Research 25:13571368.

K. Kurihara , S. Toshimitsu , and H. Hirano . 2012. Ammonoid biodiversity changes across the Cenomanian–Turonian boundary in the Yezo Group, Hokkaido, Japan. Acta Palaeontologica Polonica 57:749757.

A. J. Lagomarcino , and A. I. Miller . 2012. The relationship between genus richness and geographic area in Late Cretaceous marine biotas: epicontinental sea versus open-ocean-facing settings. PLoS ONE 7:e40472.

N. H. Landman , S. Goolaerts , J. W. M. Jagt , E. A. Jagt-Yazykova , M. Machalski , and M. M. Yacobucci . 2014. Ammonite extinction and nautilid survival at the end of the Cretaceous. Geology 42:707710.

R. M. Leckie , T. J. Bralower , and R. Cashman . 2002. Oceanic anoxia events and plankton evolution: biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography 17:PA623.

K. G. Miller , J. D. Wright , and J. V. Browning . 2005. Visions of ice sheets in a greenhouse world. Marine Geology 217:215231.

A. I. Miller , M. Aberhan , D. P. Buick , K. V. Bulinski , C. A. Ferguson , A. J. W. Hendy , and W. Kiessling . 2009. Phanerozoic trends in the global geographic disparity of marine biotas. Paleobiology 35:612630.

C. Monnet 2009. The Cenomanian–Turonian boundary mass extinction (Late Cretaceous): new insights from ammonoid biodiversity patterns of Europe, Tunisia and the Western Interior (North America). Palaeogeography, Palaeoclimatology, Palaeoecology 282:88104.

C. Monnet , and H. Bucher . 2007a. Ammonite-based correlations in the Cenomanian–lower Turonian of north-west Europe, central Tunisia, and the Western Interior (North America). Cretaceous Research 28:10171032.

C. Monnet , and H. Bucher . 2007b. European ammonoid diversity questions the spreading of anoxia as primary cause for the Cenomanian/Turonian (Late Cretaceous) mass extinction. Swiss Journal of Geosciences 100:137144.

F. M. Monteiro , R. D. Pancost , A. Ridgwell , and Y. Donnadieu . 2012. Nutrients as the dominant control on the spread of anoxia and euxinia across the Cenomanian–Turonian oceanic anoxic event (OAE2): model-data comparison. Paleoceanography 27:PA4209.

K. Moriya , P. A. Wilson , O. Friedrich , J. Erbacher , and H. Kawahata . 2007. Testing for ice sheets during the mid-Cretaceous greenhouse using glassy foraminiferal calcite from mid-Cenomanian tropics on Demerara Rise. Geology 35:615618.

C. E. Myers , R. A. MacKenzie III, and B. S. Lieberman . 2013. Greenhouse biogeography: the relationship of geographic range with invasion and extinction in the Cretaceous Western Interior Seaway. Paleobiology 39:135148.

C. E. Myers , A. L. Stigall , and B. S. Lieberman . 2015. PaleoENM: applying ecological niche modeling to the fossil record. Paleobiology 41:226244.

K. S. Nielsen , C. J. Schröder-Adams , D. A. Leckie , J. W. Haggart , and K. Elderbak . 2008. Turonian to Santonian paleoenvironmental changes in the Cretaceous Western Interior Sea: the Carlile and Niobrara formations in southern Alberta and southwestern Saskatchewan, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 270:6491.

R. D. Norris , K. L. Bice , E. A. Magno , and P. A. Wilson . 2002. Jiggling the tropical thermostat in the Cretaceous hothouse. Geology 30:299302.

C. R. C. Paul , S. F. Mitchell , J. D. Marshall , P. N. Leary , A. S. Gale , A. M. Duane , and P. W. Ditchfield . 1994. Palaeoceanographic events in the Middle Cenomanian of Northwest Europe. Cretaceous Research 15:707738.

C. J. Poulsen , C. Tabor , and J. D. White . 2015. Long-term climate forcing by atmospheric oxygen concentrations. Science 348(6240), 12381241.

D. M. Raup , and J. J. Sepkoski Jr. 1986. Periodic extinction of families and genera. Science 231:833836.

K. A. Ritterbush , R. Hoffmann , A. Lukeneder , and K. De Baets . 2014. Pelagic palaeoecology: the importance of recent constraints on ammonoid palaeobiology and life history. Journal of Zoology 292:229241.

A. B. Smith , A. S. Gale , and N. E. A. Monks . 2001. Sea-level change and rock-record bias in the Cretaceous: a problem for extinction and biodiversity studies. Paleobiology 27:241253.

A. L. Stigall , and B. S. Lieberman . 2006. Quantitative paleobiogeography: GIS, phylogenetic biogeographic analysis, and conservation insights. Journal of Biogeography 33:20512060.

D. J. Thomas , and D. S. Tilghman . 2014. Geographically different oceanographic responses to global warming during the Cenomanian–Turonian interval and Oceanic Anoxic Event 2. Palaeogeography, Palaeoclimatology, Palaeoecology 411:136143.

S. C. Turgeon , and R. A. Creaser . 2008. Cretaceous Oceanic Anoxic Event 2 triggered by a massive magmatic episode. Nature 454:323326.

D. Uličny , J. Hladikova , M. J. Attrep , S. Čech , L. Hradecká , and M. Svobodová . 1997. Sea-level changes and geochemical anomalies across the Cenomanian–Turonian boundary: Pecinov quarry, Bohemia. Palaeogeography, Palaeoclimatology, Palaeoecology 132:265285.

N. A. G. M. Van Helmond , A. Sluijs , G.-J. Reichart , J. S. Sinninghe Damsté , C. P. Slomp , and H. Brinkhuis . 2014. A perturbed hydrological cycle during Oceanic Anoxic Event 2. Geology 42:123126.

N. A. G. M. Van Helmond , A. Sluijs , J. S. Sinninghe Damsté , G.-J. Reichart , S. Voigt , J. Erbacher , J. Pross , and H. Brinkhuis . 2015. Freshwater discharge controlled deposition of Cenomanian–Turonian black shales on the NW European epicontinental shelf (Wunstorf, northern Germany). Climate of the Past 11:495508.

D. A. Vilhena , and A. B. Smith . 2013. Spatial bias in the marine fossil record. PLoS ONE 8:e74470.

P. A. Wilson , and R. D. Norris . 2001. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature 412:425428.

S.-Y. Wu. , and A. I. Miller . 2014. The shortest distance between two points isn’t always a great circle: getting around landmasses in the calibration of marine geodisparity. Paleobiology 40:428439.

M. M Yacobucci 2005. Multifractal and white noise evolutionary dynamics in Jurassic–Cretaceous Ammonoidea. Geology 33:97100.

H. Yahada , and R. Wani . 2013. Limited migration of scaphitid ammonoids: evidence from the analyses of shell whorls. Journal of Paleontology 87:406412.

W. Yang , K. Ma , and H. Kreft . 2013. Geographical sampling bias in a large distributional database and its effects on species richness-environment models. Journal of Biogeography 40:14151426.

X.-Y. Zheng , H. C. Jenkyns , A. S. Gale , D. J. Ward , and G. M. Henderson . 2016. A climatic control on reorganization of ocean circulation during the mid-Cenomanian event and Cenomanian–Turonian oceanic anoxic event (OAE 2): Nd isotope evidence. Geology 44:151154.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Paleobiology
  • ISSN: 0094-8373
  • EISSN: 1938-5331
  • URL: /core/journals/paleobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 3
Total number of PDF views: 26 *
Loading metrics...

Abstract views

Total abstract views: 183 *
Loading metrics...

* Views captured on Cambridge Core between 20th June 2017 - 25th July 2017. This data will be updated every 24 hours.