Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T15:16:34.665Z Has data issue: false hasContentIssue false

Marine life in a greenhouse world: cephalopod biodiversity and biogeography during the early Late Cretaceous

Published online by Cambridge University Press:  20 June 2017

Margaret M. Yacobucci*
Affiliation:
Department of Geology, School of Earth, Environment and Society, Bowling Green State University, Bowling Green, Ohio 43403, U.S.A.; E-mail: mmyacob@bgsu.edu

Abstract

Two end-member models are proposed to explain marine biotic responses to greenhouse conditions. Global warming and increasing sea level may: (1) promote dispersal of marine species, leading to larger geographic ranges and decreased speciation and biodiversity; or (2) result in formation of isolated epicontinental basins that host endemic radiations, leading to smaller geographic ranges and increased speciation and biodiversity. The Cenomanian–Turonian (C–T) interval, marked by greenhouse warming, sea-level rise, ocean anoxia, and biotic turnover, presents an opportunity to test these two end-member models. In particular, how cephalopods responded to these global changes has not been clear. A global database of 7262 cephalopod occurrences was used to evaluate biodiversity changes through the C–T interval. Both species- and genus-level diversity peaked in the late Cenomanian. The global diversity drop across the C/T boundary was modest; rather, diversity was low during the middle Cenomanian and middle Turonian, times of brief cooling. Regional variations in diversity responses may reflect the degree and timing of environmental perturbations within different oceanographic settings. Surprisingly, cephalopod faunas in the European Platform, Western Interior, and South Atlantic all shifted equatorward across the C/T boundary, whereas other regions saw no change in latitudinal distributions. Global generic geographic ranges did not change through the C–T interval, but the percentage of cosmopolitan genera did increase significantly across the C/T, both globally and within the Western Interior and Europe, whereas cosmopolitans dropped in the Pacific and South Atlantic. Neither end-member model for biodiversity change in a greenhouse world is supported for C–T cephalopods, as diversity increased without an associated increase in geographic range. It may be that sea-level rise and global warming led to both endemic radiations in epicontinental basins and an increase in cosmopolitan taxa in some regions, demonstrating the importance of combining global and regional-scale analyses.

Type
Articles
Copyright
Copyright © 2017 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Arthur, M. A., and Schlanger, S. O.. 1979. Cretaceous “oceanic anoxic events” as causal factors in development of reef-reservoired giant oil fields. American Association of Petroleum Geologists Bulletin 63:870885.Google Scholar
Arthur, M. A., Dean, W. E., and Schlanger, S. O.. 1985. Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO2. In E. T. Sundquist and W. S. Broecker, eds. The carbon cycle and atmospheric CO2: natural variations Archean to present. American Geophysical Union Monograph 32:504–529.CrossRefGoogle Scholar
Arthur, M. A., Schlanger, S. O., and Jenkyns, H. C.. 1987. The Cenomanian–Turonian oceanic anoxic event. II. Paleoceanographic controls on organic matter production and preservation. In J. Brooks and A. J. Fleet, eds. Marine petroleum source rocks. Geological Society of London Special Publication 26:401–420.Google Scholar
Arthur, M. A., Dean, W. E., and Pratt, L. M.. 1988. Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary. Nature 335:714717.Google Scholar
Benjamini, Y., and Hochberg, Y.. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society B 57:289300.Google Scholar
Berner, R. A. 1994. GEOCARB II: a revised model for atmospheric CO2 over Phanerozoic time. American Journal of Science 294:5691.Google Scholar
Berner, R. A., and Kothavala, Z.. 2001. GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science 301:182204.CrossRefGoogle Scholar
Bice, K. L., and Norris, R. D.. 2002. Possible atmospheric CO2 extremes of the Middle Cretaceous (late Albian–Turonian). Paleoceanography 17:1070.Google Scholar
Bice, K. L., Birgel, D., Meyers, P. A., Dahl, K. A., Hinrichs, K.-U., and Norris, R. D.. 2006. A multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric CO2 concentrations. Paleoceanography 21:PA2002.CrossRefGoogle Scholar
Blakey, R. 2011. Mollweide plate tectonic maps. http://cpgeosystems.com/mollglobe.html (accessed 11 October 2014).Google Scholar
Bowman, A. R., and Bralower, T. J.. 2005. Paleoceanographic significance of high-resolution carbon isotope records across the Cenomanian–Turonian boundary in the Western Interior and New Jersey coastal plain, USA. Marine Geology 217:305321.Google Scholar
Bralower, T. J. 1988. Calcareous nannofossil biostratigraphy and assemblages of the Cenomanian–Turonian boundary interval: implications for the origin and timing of ocean anoxia. Paleoceanography 3:275316.CrossRefGoogle Scholar
Brom, K. R., Salamon, M. A., Ferré, B., Brachaniec, T., and Szopa, K.. 2015. The Lilliput effect in crinoids at the end of the Oceanic Anoxic Event 2: a case study from Poland. Journal of Paleontology 89:10761081.Google Scholar
Clarke, L. J., and Jenkyns, H. C.. 1999. New oxygen isotope evidence for long-term Cretaceous climatic change in the Southern Hemisphere. Geology 27:699702.Google Scholar
Cobban, W. A., Walaszczyk, I., Obradovich, J. D., and McKinney, K. C.. 2006. A USGS zonal table for the Upper Cretaceous Middle Cenomanian–Maastrichtian of the Western Interior of the United States based on ammonites, inoceramids, and radiometric ages. USGS Open-File Report 2006-1250. U. S. Geological Survey, Reston, Va.CrossRefGoogle Scholar
Cohen, K. M., Finney, S. C., Gibbard, P. L., and Fan, J.-X.. 2013. The ICS International Chronostratigraphic Chart. Episodes 36:199204.Google Scholar
Courville, P. 2007. Échanges et colonisations fauniques (Ammonitina) entre Téthys et Atlantique sud au Crétacé supérieur: voies atlantiques ou sahariennes? In L. G. Bulot, S. Ferry, and D. Grosheny, eds., Relations entre les marges septentrionale et méridionale de la Téthys au Crétacé [Relations between the northern and southern margins of the Tethys ocean during the Cretaceous period]. Carnets de Géologie/Notebooks on Geology, Brest, Mémoire 2007/02, Résumé 02 (CG2007_M02/02).Google Scholar
Deutsch, C., Ferrell, A., Seibel, B., Pörtner, H.-O., and Huey, R. B.. 2015. Climate change tightens a metabolic constraint on marine habitats. Science 348:11321135.Google Scholar
Doubleday, Z. A., Prowse, T. A. A., Arkhipkin, A., Pierce, G J., Semmens, J., Steer, M., Leporati, S. C., Lourenço, S., Quetglas, A., Sauer, W., and Gillanders, B. M.. 2016. Global proliferation of cephalopods. Current Biology 26:R387R407.CrossRefGoogle ScholarPubMed
Elder, W. P. 1989. Molluscan extinction patterns across the Cenomanian–Turonian boundary in the western interior of the United States. Paleobiology 15:299320.CrossRefGoogle Scholar
Elderbak, K., and Leckie, R. M.. 2016. Paleocirculation and foraminiferal assemblages of the Cenomanian–Turonian Bridge Creek Limestone bedding couplets: productivity vs. dilution during OAE2. Cretaceous Research 60:5277.Google Scholar
Elderbak, K., Leckie, R. M., and Tibert, N. E.. 2014. Paleoenvironmental and paleoceanographic changes across the Cenomanian–Turonian Boundary Event (Oceanic Anoxic Event 2) as indicated by foraminiferal assemblages from the eastern margin of the Cretaceous Western Interior Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 413:2948.CrossRefGoogle Scholar
Eleson, J. W., and Bralower, T. J.. 2005. Evidence of changes in surface water temperature and productivity at the Cenomanian/Turonian Boundary. Micropaleontology 51:309334.Google Scholar
Environmental Systems Research Institute. 2011. ArcGIS Desktop, Release 10.1. ESRI, Redlands, Calif.Google Scholar
Foote, M. 2014. Environmental controls on geographic range size in marine animal genera. Paleobiology 40:440458.Google Scholar
Foote, M., Ritterbush, K. A., and Miller, A. I.. 2016. Geographic ranges of genera and their constituent species: structure, evolutionary dynamics, and extinction resistance. Paleobiology 42:269288.Google Scholar
Forster, A., Schouten, S., Baas, M., and Sinninghe Damsté, J. S.. 2007a. Mid-Cretaceous (Albian-Santonian) sea surface temperature record of the tropical Atlantic Ocean. Geology 35:919922.CrossRefGoogle Scholar
Forster, A., Schouten, S., Moriya, K., Wilson, P. A., and Sinninghe Damsté, J. S.. 2007b. Tropical warming and intermittent cooling during the Cenomanian/Turonian Oceanic Anoxic Event 2: sea surface temperature from the equatorial Atlantic. Paleoceanography 22:114.Google Scholar
Friedrich, O., Norris, R. D., and Erbacher, J.. 2012. Evolution of middle to Late Cretaceous oceans—a 55 m.y. record of Earth’s temperature and carbon cycle. Geology 40:107110.Google Scholar
Gale, A. S., Jenkyns, H. C., Kennedy, W. J., and Corfield, R. M.. 1993. Chemostratigraphy versus biostratigraphy: data from around the Cenomanian–Turonian boundary. Journal of the Geological Society, London 150:2932.CrossRefGoogle Scholar
Gale, A. S., Smith, A. B., Monks, N. E. A., Young, J. A., Howard, A., Wray, D. W., and Huggett, J. M.. 2000. Marine biodiversity through the Late Cenomanian–Early Turonian: palaeoceanographic controls and sequence stratigraphic biases. Journal of the Geological Society, London 157:745757.Google Scholar
Giraud, F., Reboulet, S., Deconinck, J. F., Martinez, M., Carpentier, A., and Bréziat, C.. 2013. The Mid-Cenomanian Event in southeastern France: evidence from palaeontological and clay mineralogical data. Cretaceous Research 46:4358.Google Scholar
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 9. pp. http://palaeo-electronica.org/2001_1/past/issue1_01.htm.Google Scholar
Hancock, J. M. 2003. Lower sea levels in the Middle Cenomanian. Carnets de Géologie/Notebooks on Geology, Maintenon, Letter 2003/02 (CG2003_L02_JMH).CrossRefGoogle Scholar
Hancock, J. M., and Kauffman, E. G.. 1979. The great transgressions of the Late Cretaceous. Journal of the Geological Society, London 136:175186.Google Scholar
Haq, B. U., Hardenbol, J., and Vail, P. R.. 1987. Chronology of fluctuating sea levels since the Triassic (250 million years ago to present). Science 235:11561167.Google Scholar
Harries, P. J. 1993. Dynamics of survival following the Cenomanian–Turonian (Upper Cretaceous) mass extinction event. Cretaceous Research 14:563583.Google Scholar
Harries, P. J., and Little, C. T. S.. 1999. The early Toarcian (Early Jurassic) and the Cenomanian–Turonian (Late Cretaceous) mass extinctions: similarities and contrasts. Palaeogeography, Palaeoclimatology, Palaeoecology 154:3966.Google Scholar
Hasegawa, T. 1997. Cenomanian–Turonian carbon isotope events recorded in terrestrial organic matter from northern Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 130:251273.CrossRefGoogle Scholar
Hay, W. W. 1995. Cretaceous paleoceanography. Geologica Carpathica 46:257266.Google Scholar
Hay, W. W. 2008. Evolving ideas about the Cretaceous climate and ocean circulation. Cretaceous Research 29:725753.Google Scholar
Herman, A. B., and Spicer, R. A.. 1996. Paleobotanical evidence for a warm Cretaceous Arctic Ocean. Nature 380:330333.Google Scholar
Hirano, H., Toshimitsu, S., Matsumoto, T., and Takahashi, K.. 2000. Changes in Cretaceous ammonoid diversity and marine environments of the Japanese Islands. Pp. 145154 in H. Okada, and N. J. Mateer, eds. Cretaceous Environments of Asia. Elsevier, Amsterdam.CrossRefGoogle Scholar
Holland, S. M. 2012. Sea-level change and the area of shallow marine habitat: implications for marine biodiversity. Paleobiology 38:205217.Google Scholar
Holland, S. M., and Christie, M.. 2013. Changes in area of shallow siliciclastic marine habitat in response to sediment deposition: implications for onshore-offshore paleobiologic patterns. Paleobiology 39:511524.Google Scholar
Huber, B. T., Hodell, D. A., and Hamilton, C. P.. 1995. Middle–Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients. GSA Bulletin 107:11641191.Google Scholar
Huber, B. T., Norris, R. D., and MacLeod, K. G.. 2002. Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology 30:123126.Google Scholar
Ikeda, Y., and Wani, R.. 2012. Different modes of migration within Late Cretaceous ammonoids in northwestern Hokkaido, Japan: evidence from the analyses of shell whorls. Journal of Paleontology 86:605615.Google Scholar
Intergovernmental Panel on Climate Change. 2013. Summary for policymakers. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, eds. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, U.K.Google Scholar
Jagt-Yazykova, E. A. 2011. Palaeobiogeographical and palaeobiological aspects of mid- and Late Cretaceous ammonite evolution and bio-events in the Russian Pacific. Scripta Geologica 143:15121.Google Scholar
Jagt-Yazykova, E. A 2012. Ammonite faunal dynamics across bio-events during the mid- and Late Cretaceous along the Russian Pacific coast. Acta Palaeontologica Polonica 57:737748.Google Scholar
Jarvis, I., Carson, G. A., Cooper, M. K. E., Hart, M. B., Leary, P., Tocher, B. A., Horne, D., and Rosenfeld, A.. 1988. Microfossil assemblages and the Cenomanian–Turonian (Late Cretaceous) oceanic anoxic event. Cretaceous Research 9:3103.Google Scholar
Jarvis, I., Gale, A. S., Jenkyns, H. C., and Pearce, M. A.. 2006. Secular variation in Late Cretaceous carbon isotopes: a new δ13C carbonate reference curve for the Cenomanian–Campanian (99.6–70.6 Ma). Geological Magazine 143:561608.CrossRefGoogle Scholar
Jarvis, I., Lignum, J. S., Gröcke, D. R., Jenkyns, H. C., and Pearce, M. A.. 2011. Black shale deposition, atmospheric CO2 drawdown, and cooling during the Cenomanian–Turonian Oceanic Anoxic Event. Paleoceanography 26:PA3201.Google Scholar
Jenkyns, H. C. 1980. Cretaceous anoxic events: from continents to oceans. Journal of the Geological Society, London 137:171188.Google Scholar
Jenkyns, H. C 2003. Evidence for rapid climate change in the Mesozoic–Palaeogene greenhouse world. Philosophical Transactions of the Royal Society of London A 361:18851916.Google Scholar
Jenkyns, H. C 2010. Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems 11:Q03004.Google Scholar
Jenkyns, H. C., Dickson, A. J., Ruhl, M., and Van Den Boorn, S. H. J. M.. 2017. Basalt-seawater interaction, the Plenus Cold Event, enhanced weathering and geochemical change: deconstructing Oceanic Anoxic Event 2 (Cenomanian–Turonian, Late Cretaceous). Sedimentology 64:1643.Google Scholar
Kaiho, K., and Hasegawa, T.. 1994. End-Cenomanian benthic foraminiferal extinctions and oceanic dysoxic events in the northwestern Pacific Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 111:2943.Google Scholar
Kaiho, K., Katabuchi, M., Oba, M., and Lamolda, M.. 2014. Repeated anoxia-extinction episodes progressing from slope to shelf during the latest Cenomanian. Gondwana Research 25:13571368.Google Scholar
Kurihara, K., Toshimitsu, S., and Hirano, H.. 2012. Ammonoid biodiversity changes across the Cenomanian–Turonian boundary in the Yezo Group, Hokkaido, Japan. Acta Palaeontologica Polonica 57:749757.Google Scholar
Lagomarcino, A. J., and Miller, A. I.. 2012. The relationship between genus richness and geographic area in Late Cretaceous marine biotas: epicontinental sea versus open-ocean-facing settings. PLoS ONE 7:e40472.Google Scholar
Landman, N. H., Goolaerts, S., Jagt, J. W. M., Jagt-Yazykova, E. A., Machalski, M., and Yacobucci, M. M.. 2014. Ammonite extinction and nautilid survival at the end of the Cretaceous. Geology 42:707710.CrossRefGoogle Scholar
Leckie, R. M., Bralower, T. J., and Cashman, R.. 2002. Oceanic anoxia events and plankton evolution: biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography 17:PA623.Google Scholar
MacKenzie, R. A. III. 2007. Exploring Late Cretaceous Western Interior ammonoid geographic range and its relationship to diversity dynamics using geographic information systems (GIS). Unpublished M.S. thesis, Bowling Green State University, Bowling Green, Ohio. 363 p. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1194232321.Google Scholar
Martin, E. E., MacLeod, K. G., Jiménez Berrocoso, A., and Bourbon, E.. 2012. Water mass circulation on Demerara Rise during the Late Cretaceous based on Nd isotopes. Earth and Planetary Science Letters 327–328:111120.Google Scholar
Miller, K. G., Wright, J. D., and Browning, J. V.. 2005. Visions of ice sheets in a greenhouse world. Marine Geology 217:215231.Google Scholar
Miller, A. I., Aberhan, M., Buick, D. P., Bulinski, K. V., Ferguson, C. A., Hendy, A. J. W., and Kiessling, W.. 2009. Phanerozoic trends in the global geographic disparity of marine biotas. Paleobiology 35:612630.Google Scholar
Monnet, C. 2009. The Cenomanian–Turonian boundary mass extinction (Late Cretaceous): new insights from ammonoid biodiversity patterns of Europe, Tunisia and the Western Interior (North America). Palaeogeography, Palaeoclimatology, Palaeoecology 282:88104.Google Scholar
Monnet, C., and Bucher, H.. 2002. Cenomanian (early Late Cretaceous) ammonoid faunas of Western Europe. Part I: biochronology (Unitary Associations) and diachronisms of datums. Eclogae Geologicae Helvetiae 95:5773.Google Scholar
Monnet, C., and Bucher, H.. 2007a. Ammonite-based correlations in the Cenomanian–lower Turonian of north-west Europe, central Tunisia, and the Western Interior (North America). Cretaceous Research 28:10171032.Google Scholar
Monnet, C., and Bucher, H.. 2007b. European ammonoid diversity questions the spreading of anoxia as primary cause for the Cenomanian/Turonian (Late Cretaceous) mass extinction. Swiss Journal of Geosciences 100:137144.Google Scholar
Monnet, C., Bucher, H., Escarguel, G., and Guex, J.. 2003. Cenomanian (early Late Cretaceous) ammonoid faunas of Western Europe. Part II: diversity patterns and the end-Cenomanian anoxic event. Eclogae Geologicae Helvetiae 96:381398.Google Scholar
Monteiro, F. M., Pancost, R. D., Ridgwell, A., and Donnadieu, Y.. 2012. Nutrients as the dominant control on the spread of anoxia and euxinia across the Cenomanian–Turonian oceanic anoxic event (OAE2): model-data comparison. Paleoceanography 27:PA4209.CrossRefGoogle Scholar
Moriya, K., Wilson, P. A., Friedrich, O., Erbacher, J., and Kawahata, H.. 2007. Testing for ice sheets during the mid-Cretaceous greenhouse using glassy foraminiferal calcite from mid-Cenomanian tropics on Demerara Rise. Geology 35:615618.Google Scholar
Myers, C. E., MacKenzie, R. A. III, and Lieberman, B. S.. 2013. Greenhouse biogeography: the relationship of geographic range with invasion and extinction in the Cretaceous Western Interior Seaway. Paleobiology 39:135148.Google Scholar
Myers, C. E., Stigall, A. L., and Lieberman, B. S.. 2015. PaleoENM: applying ecological niche modeling to the fossil record. Paleobiology 41:226244.Google Scholar
Nielsen, K. S., Schröder-Adams, C. J., Leckie, D. A., Haggart, J. W., and Elderbak, K.. 2008. Turonian to Santonian paleoenvironmental changes in the Cretaceous Western Interior Sea: the Carlile and Niobrara formations in southern Alberta and southwestern Saskatchewan, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 270:6491.Google Scholar
Norris, R. D., Bice, K. L., Magno, E. A., and Wilson, P. A.. 2002. Jiggling the tropical thermostat in the Cretaceous hothouse. Geology 30:299302.Google Scholar
Paul, C. R. C., Mitchell, S. F., Marshall, J. D., Leary, P. N., Gale, A. S., Duane, A. M., and Ditchfield, P. W.. 1994. Palaeoceanographic events in the Middle Cenomanian of Northwest Europe. Cretaceous Research 15:707738.Google Scholar
Payne, J. L., and Finnegan, S.. 2007. The effect of geographic range on extinction risk during background and mass extinction. Proceedings of the National Academy of Sciences USA 104:10506–10511.Google Scholar
Poulsen, C. J., Tabor, C., and White, J. D.. 2015. Long-term climate forcing by atmospheric oxygen concentrations. Science 348(6240), 12381241.Google Scholar
Pratt, L. M. 1984. Influence of paleoenvironmental factors on preservation of organic matter in Middle Cretaceous Greenhorn Formation, Pueblo, Colorado. American Association of Petroleum Geologists Bulletin 68:11461159.Google Scholar
Pratt, L. M 1985. Isotopic studies of organic matter and carbonate in rocks of the Greenhorn marine cycle. Pp. 38–48 in L. M. Pratt, E. G. Kauffman, and F. B. Zelt, eds. Fine-grained deposits and biofacies of the Cretaceous Western Interior Seaway: evidence of cyclic sedimentary processes. SEPM Field Trip Guidebook, Vol. 4.Google Scholar
Premoli Silva, I., Erba, E., Salvini, G., Locatelli, C., and Verga, D.. 1999. Biotic changes in Cretaceous oceanic anoxic events of Tethys. Journal of Foraminiferal Research 29:352370.Google Scholar
Raup, D. M., and Sepkoski, J. J. Jr. 1986. Periodic extinction of families and genera. Science 231:833836.Google Scholar
Ritterbush, K. A., Hoffmann, R., Lukeneder, A., and De Baets, K.. 2014. Pelagic palaeoecology: the importance of recent constraints on ammonoid palaeobiology and life history. Journal of Zoology 292:229241.Google Scholar
Sageman, B. B., Meyers, S. R., and Arthur, M. A.. 2006. Orbital time scale and new C-isotope record for Cenomanian–Turonian boundary stratotype. Geology 34:125128.Google Scholar
Schlanger, S. O., and Jenkyns, H. C.. 1976. Cretaceous oceanic anoxic events: causes and consequences. Geologie en Mijnbouw 55:179184.Google Scholar
Schlanger, S. O., Arthur, M. A., Jenkyns, H. C., and Scholle, P. A.. 1987. The Cenomanian–Turonian oceanic anoxic event. I. Stratigraphy and distribution of organic carbon-rich beds and the marine δ13C excursion. In J. Brooks and A. Fleet, eds. Marine petroleum source rocks. Geological Society of London Special Publication 26:371–399.Google Scholar
Scotese, C. R. 2001. PointTracker, Version 4c. Paleomap Project, Arlington, Tex. http://www.scotese.com.Google Scholar
Scott, R.W., Oboh-Ikuenobe, F. E., Benson, D. G. Jr., and Holbrook, J. M.. 2009. Numerical age calibration of the Albian/Cenomanian boundary. Stratigraphy 6:1732.Google Scholar
Smith, A. B., Gale, A. S., and Monks, N. E. A.. 2001. Sea-level change and rock-record bias in the Cretaceous: a problem for extinction and biodiversity studies. Paleobiology 27:241253.Google Scholar
Stigall, A. L., and Lieberman, B. S.. 2006. Quantitative paleobiogeography: GIS, phylogenetic biogeographic analysis, and conservation insights. Journal of Biogeography 33:20512060.CrossRefGoogle Scholar
Thomas, D. J., and Tilghman, D. S.. 2014. Geographically different oceanographic responses to global warming during the Cenomanian–Turonian interval and Oceanic Anoxic Event 2. Palaeogeography, Palaeoclimatology, Palaeoecology 411:136143.Google Scholar
Turgeon, S. C., and Creaser, R. A.. 2008. Cretaceous Oceanic Anoxic Event 2 triggered by a massive magmatic episode. Nature 454:323326.Google Scholar
Uličny, D., Hladikova, J., Attrep, M. J., Čech, S., Hradecká, L., and Svobodová, M.. 1997. Sea-level changes and geochemical anomalies across the Cenomanian–Turonian boundary: Pecinov quarry, Bohemia. Palaeogeography, Palaeoclimatology, Palaeoecology 132:265285.Google Scholar
Van Helmond, N. A. G. M., Sluijs, A., Reichart, G.-J., Sinninghe Damsté, J. S., Slomp, C. P., and Brinkhuis, H.. 2014. A perturbed hydrological cycle during Oceanic Anoxic Event 2. Geology 42:123126.Google Scholar
Van Helmond, N. A. G. M., Sluijs, A., Sinninghe Damsté, J. S., Reichart, G.-J., Voigt, S., Erbacher, J., Pross, J., and Brinkhuis, H.. 2015. Freshwater discharge controlled deposition of Cenomanian–Turonian black shales on the NW European epicontinental shelf (Wunstorf, northern Germany). Climate of the Past 11:495508.Google Scholar
Vilhena, D. A., and Smith, A. B.. 2013. Spatial bias in the marine fossil record. PLoS ONE 8:e74470.Google Scholar
Weinkauf, M. 2012. Excel spreadsheet to calculate false discovery rate correction, BenjaminiHochberg.xlsx, Version 1.1. https://www.marum.de/Binaries/Binary745/BenjaminiHochberg.xlsx.Google Scholar
Wilson, P. A., and Norris, R. D.. 2001. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature 412:425428.Google Scholar
Wu., S.-Y., and Miller, A. I.. 2014. The shortest distance between two points isn’t always a great circle: getting around landmasses in the calibration of marine geodisparity. Paleobiology 40:428439.Google Scholar
Yacobucci, M. M. 1999. Plasticity of developmental timing as the underlying cause of high speciation rates in ammonoids: an example from the Cenomanian Western Interior Seaway of North America. Pp. 59–76 in F. Olóriz and F. J. Rodríguez-Tovar, eds. Advancing research in living and fossil cephalopods. Proceedings of the Fourth International Symposium on Cephalopods—Present and Past, Granada, Spain, July 15–17, 1996. Plenum Press, New York.Google Scholar
Yacobucci, M. M 2005. Multifractal and white noise evolutionary dynamics in Jurassic–Cretaceous Ammonoidea. Geology 33:97100.Google Scholar
Yacobucci, M. M 2015. Macroevolution and paleobiogeography of Jurassic–Cretaceous ammonoids. In C. Klug, D. Korn, K. De Baets, I. Kruta, and R. H. Mapes, eds. Ammonoid paleobiology: from macroevolution to paleogeography. Topics in Geobiology 44:189–228.Google Scholar
Yahada, H., and Wani, R.. 2013. Limited migration of scaphitid ammonoids: evidence from the analyses of shell whorls. Journal of Paleontology 87:406412.Google Scholar
Yang, W., Ma, K., and Kreft, H.. 2013. Geographical sampling bias in a large distributional database and its effects on species richness-environment models. Journal of Biogeography 40:14151426.CrossRefGoogle Scholar
Zheng, X.-Y., Jenkyns, H. C., Gale, A. S., Ward, D. J., and Henderson, G. M.. 2016. A climatic control on reorganization of ocean circulation during the mid-Cenomanian event and Cenomanian–Turonian oceanic anoxic event (OAE 2): Nd isotope evidence. Geology 44:151154.Google Scholar