Skip to main content
    • Aa
    • Aa

Plankton ecology and the Proterozoic-Phanerozoic transition

  • Nicholas J. Butterfield (a1)

Most modern marine ecology is ultimately based on unicellular phytoplankton, yet most large animals are unable to graze directly on even relatively large net phytoplankton; the repackaging effected by herbivorous mesozooplankton thus represents a key link in marine metazoan food chains. Despite the deep taphonomic biases affecting plankton fossilization, there is a clear record of phytoplankton from at least 1800 m.y ago. Proterozoic plankton are represented by small-to medium-sized sphaeromorphic acritarchs and probably do not include many/most of the unusually large acritarchs that characterize the Neoproterozoic. The first significant shift in phytoplankton diversity was therefore the rapid radiation of small acanthomorphic acritarchs in the Early Cambrian. The coincidence of phytoplankton diversification with the Cambrian radiation of large animals points compellingly to an ecological linkage between the two, particularly in light of recently discovered filter-feeding mesozooplankton in the Early Cambrian. The introduction of planktic filter feeders would have established the second tier of the Eltonian pyramid, potentially setting off the “self-propagating mutual feedback system of diversification” now recognized as the Cambrian explosion (Stanley 1973, 1976).

By consuming significant percentages of net phytoplankton and suspending it as animal biomass and non-aggregating fecal pellets, mesozooplankton cause a net reduction in export production; a general introduction of zooplankton would therefore have reduced carbon burial and moderated the bloom and bust cycle that must have characterized Proterozoic populations of net phytoplankton. The effect of added trophic levels in Early Cambrian ecosystems can be viewed as a serial application of the trophic cascade process observed in modern lakes, whereby the introduction of higher trophic levels determines the accumulation of plant biomass at the base of the system. As such, the major biogeochemical perturbations that mark the onset of the Phanerozoic might be considered a consequence, rather than a cause, of the Cambrian explosion; reduced C export due to zooplankton expansion explains the otherwise anomalous drop in δ13C at the base of the Tommotian.

Cambrian acanthomorphic acritarchs likely derived from planktic leiosphaerids exposed to mesozooplanktic grazing pressure, the ornamentation effectively increasing vesicle size without compromising buoyancy or surface-area:volume ratios. Alternatively, they may represent an escape into the plankton through a miniaturization of the much larger Neoproterozoic acanthomorphs. An invasion of small benthic herbivores into the water column to exploit the phytoplankton accounts for the origin of the mesozooplankton and may have been the key innovation in the Cambrian explosion.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

A. L. Alldredge , and M. W. Silver 1988. Characteristics, dynamics and significance of marine snow. Progress in Oceanography 20:4182.

Y. Avnimelech , B. W. Troeger , and L. W. Reed 1982. Mutual flocculation of algae and clay: evidence and implications. Science 216:6365.

F. Azam , T. Fenchel , J. G. Gray , L. A. Meyer-Reil , and T. Thingstad 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10:257263.

U. V. Bathmann , T. T. Noji , M. Voss , and R. Peinert 1987. Copepod fecal pellets: abundance, sedimentation and content at a permanent station in the Norwegian Sea in May/June 1986. Marine Ecology Progress Series 38:4551.

M. D. Brasier 1992. Nutrient-enriched waters and the early skeletal fossil record. Journal of the Geological Society of London 149:621629.

M. T. Brett , and C. R. Goldman 1997. Consumer versus resource control in freshwater pelagic food webs. Science 275:384386.

M. T. Brett , K. Wiackowski , F. S. Lubnow , A. Mueller-Solger , J. J. Elser , and C. R. Goldman 1994. Species-dependent effects of zooplankton on planktonic ecosystem processes in Castle Lake, California. Ecology 75:22432254.

N. J. Butterfield 1994. Burgess Shale-type fossils from a Lower Cambrian shallow shelf sequence in northwestern Canada. Nature 369:477479.

S. R. Carpenter , and J. F. Kitchell 1993. The trophic cascade in lakes. Cambridge University Press, Cambridge.

P. J. Cook , and J. H. Shergold 1984. Phosphorus, phosphorites and skeletal evolution at the Precambrian-Cambrian boundary. Nature 308:231236.

H. Cyr , and M. L. Pace 1993. Magnitude and patterns of herbivory in aquatic and terrestrial ecosystems. Nature 361:148150.

S. I. Dodson 1974. Adaptive change in plankton morphology in response to size-selective predation: a new hypothesis of cyclomorphosis. Limnology and Oceanography 19:721729.

R. B. Dunbar , and W. H. Berger 1981. Fecal pellet flux to modern bottom sediment of Santa Barbara Basin (California) based on sediment trapping. Geological Society of America Bulletin 92:212218.

J. J. Elser , and C. R. Goldman 1991. Zooplankton effects on phytoplankton in lakes of contrasting trophic status. Limnology and Oceanography 36:6490.

D. H. Erwin 1993. The origin of metazoan development: a palaeobiological perspective. Biological Journal of the Linnean Society 50:255274.

W. R. Evitt 1963. A discussion and proposals concerning fossil dinoflagellates, hystrichospheres and acritarchs, II. Proceedings of the National Academy of Sciences USA 49:298302.

M. A. Fedonkin 1985. Precambrian metazoans: the problems of preservation, systematitics and evolution. Philosophical Transactions of the Royal Society of London B 311:2745.

L. Fortier , J. Le Fèvre , and L. Legendre 1994. Export of biogenic carbon to fish and to the deep ocean: the role of large planktonic microphages. Journal of Plankton Research 16:809839.

R. A. Fortey , D. E. G. Briggs , and M. A. Wills 1996. The Cambrian evolutionary ‘explosion': decoupling cladogenesis from morphological disparity. Biological Journal of the Linnean Society 57:1333.

G. Fryer 1991. Functional morphology and the adaptive radiation of the Daphniidae (Branchiopoda: Anomopoda). Philosophical Transactions of the Royal Society of London B 331:199.

B. Hansen , P. K. Bj⊘rnsen , and P. J. Hansen 1994. The size ratio between planktonic predators and their prey. Limnology and Oceanography 39:395403.

R. J. Horodyski 1993. Paleontology of Proterozoic shales and mudstones: examples from the Belt Supergroup, Chuar Group and Pahrump Group, western USA. Precambrian Research 61:241278.

D. Jablonski , J. J. Sepkoski , D. J. Bottjer , and P. M. Sheehan 1983. Onshore-offshore patterns in the evolution of Phanerozoic shelf communities. Science 222:11231125.

G. A. Jackson 1990. A model of the formation of marine algal flocs by physical coagulation processes. Deep Sea Research 37:11971211.

T. Kiørboe 1993. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Advances in Marine Biology 29:172.

A. H. Knoll 1992. Biological and biogeochemical preludes to the Ediacaran radiation. pp. 5384In J. H. Lipps and P. W. Signor , eds. Origin and early evolution of the Metazoa. Plenum, New York.

A. H. Knoll 1994. Proterozoic and Early Cambrian protists: evidence for accelerating evolutionary tempo. Proceedings of the National Academy of Sciences USA 91:67436750.

A. H. Knoll , and N. J. Butterfield 1989. New window on Proterozoic life. Nature 337:602603.

A. H. Knoll , and G. Vidal 1980. Late Proterozoic vase-shaped microfossils from the Visingsö Beds, Sweden. Geologiska Föreningens i Stockholm Förhandlingar 102:207211.

W. Lampert , W. Fleckner , H. Rai , and B. E. Taylor 1986. Phytoplankton control by grazing zooplankton: a study on the spring clear-water phase. Limnology and Oceanography 31:478490.

M. R. Landry , C. J. Lorenzen , and W. K. Peterson 1994. Mesozooplankton grazing in the Southern California Bight. II. Grazing impact and particulate flux. Marine Ecology Progress Series 115:7385.

W. K. W. Li 1995. Composition of ultraphytoplankton in the central North Atlantic. Marine Ecology Progress Series 122:18.

G. A. Logan , J. M. Hayes , G. B. Hieshima , and R. E. Summons 1995. Terminal Proterozoic reorganization of biogeochemical cycles. Nature 376:5356.

A. R. Longhurst 1991. Role of the marine biosphere in the global carbon cycle. Limnology and Oceanography 36:15071526.

M. Margaritz , J. L. Kirschvink , A. J. Latham , A. Yu. Zhuravlev , and A. Yu. Rozanov 1991. Precambrian/Cambrian boundary problem: Carbon isotope correlations for Vendian and Tommotian time between Siberia and Morocco. Geology 19:847850.

J. M. Moldowan , J. Dahl , S. R. Jacobson , B. J. Huizinga , F. J. Fago , R. Shetty , D. S. Watt , and K. E. Peters 1996. Chemostratigraphic reconstruction of biofacies: molecular evidence linking cyst-forming dinoflagellates with pre-Triassic ancestors. Geology 24:159162.

T. Naganuma 1996. Calanoid copepods: linking lower-higher trophic levels by linking lower-higher Reynolds numbers. Marine Ecology Progress Series 136:311313.

P. H. Nienhuis 1981. Distribution of organic matter in living marine organisms. pp. 3169In E. K. Duursma and R. Dawson , eds. Marine organic chemistry—evolution, composition, interactions and chemistry of organic matter in seawater. Elsevier, Amsterdam.

T. A. Norton 1992. Dispersal by macroalgae. British Phycological Journal 27:293301.

C. R. C. Paul , and S. F. Mitchell 1994. Is famine a common factor in marine mass extinctions? Geology 22:679682.

D. Pauly , and V. Christensen 1995. Primary production required to sustain global fisheries. Nature 374:255257.

C. H. Pilskaln , and S. Honjo 1987. The fecal pellet fraction of biogeochemical particle fluxes to the deep sea. Global Biogeochemical Cycles 1:3148.

K. G. Porter , and E. I. Robbins 1981. Zooplankton fecal pellets link fossil fuel and phosphate deposits. Science 212:931933.

U. Riebesell 1991. Particle aggregation during a diatom bloom. II. Biological aspects. Marine Ecology Progress Series 69:281291.

S. Rigby , and C. Milsom 1996. Benthic origins of zooplankton: An environmentally determined macroevolutionary effect. Geology 24:5254.

E. I. Robbins , K. G. Porter , and K. A. Haberyan 1985. Pellet microfossils: possible evidence for metazoan life in Early Proterozoic time. Proceedings of the National Academy of Sciences USA 82:58095813.

K. O. Rothhaupt , and H. Güde 1992. The influence of spatial and temporal concentration gradients on phosphate partitioning between different size fractions of plankton: further evidence and possible causes. Limnology and Oceanography 37:739749.

J. W. Schopf , and C. Klein 1992. The Proterozoic biosphere. Cambridge University Press, Cambridge.

P. M. Sheehan , and T. A. Hansen 1986. Detritus feeding as a buffer to extinction at the end of the Cretaceous. Geology 14:868870.

E. B. Sherr , and B. F. Sherr 1991. Planktonic microbes: tiny cells at the base of the oceans's food webs. Trends in Recent Ecology and Evolution 6:5054.

V. Smetacek 1985. Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance. Marine Biology 84:239251.

S. V. Smith 1981. Marine macrophytes as a global carbon sink. Science 211:838840.

M. L. Sogin 1989. Evolution of eukaryotic microorganisms and their small subunit ribosomal RNAs. American Zoologist 29:487499.

N. Spjeldnaes 1963. A new fossil (Papillomembrana sp.) from the upper Precambrian of Norway. Nature 200:6364.

S. M. Stanley 1973. An ecological theory for the sudden origin of multicellular life in the late Precambrian. Proceedings of the National Academy of Sciences USA 70:14861489.

R. E. Summons , J. Thomas , J. R. Maxwell , and C. J. Boreham 1992. Secular and environmental constraints on the occurrence of dinosterane in sediments. Geochimica et Cosmochimica Acta 56:24372444.

R. Tollrian 1995. Chaoborus crystallinus predation on Daphnia pulex: can induced morphological changes balance effects of body size on vulnerability? Oecologia 101:151155.

T. T. Turner , and J. G. Ferrante 1979. Zooplankton fecal pellets in aquatic ecosystems. Bioscience 29:670677.

M. J. Vanni , C. Luecke , J. F. Kitchell , Y. Allen , J. Temte , and J. J. Magnuson 1990. Effects on lower trophic levels of massive fish mortality. Nature 344:333335.

I. M. van Waveren , and H. Visscher 1994. Analysis of the composition and selective preservation of organic matter in surficial deep-sea sediments from a high productivity area (Banda Sea, Indonesia). Palaeogeography, Palaeoclimatology, Palaeoecology 112:85111.

P. G. Verity , and V. Smetacek 1996. Organism life cycles, predation, and the structure of marine pelagic ecosystems. Marine Ecology Progress Series 130:277293.

G. J. Vermeij 1989. The origin of skeletons. Palaios 4:585589.

G. Vidal , and M. Moczydlowska 1992. Patterns of phytoplankton radiation across the Precambrian-Cambrian boundary. Journal of the Geological Society of London 149:647654.

M. Walter 1995. Faecal pellets in world events. Nature 376:1617.

N. A. Welschmeyer , and C. J. Lorenzen 1985. Chlorophyll budgets: zooplankton grazing and phytoplankton growth in a temperate fjord and the Central Pacific Gyres. Limnology and Oceanography 30:121.

G. M. Woodwell , R. H. Whittaker , W. A. Reiners , G. E. Likens , C. C. Delwiche , and D. B. Botkin 1978. The biota and the world carbon budget. Science 199:141146.

G. A. Wray , J. S. Levinton , and L. H. Shapiro 1996. Molecular evidence for deep Precambrian divergences among metazoan phyla. Science 274:568573.

J. C. Zachos , M. A. Arthur , and W. E. Dean 1989. Geochemical evidence for suppression of pelagic marine productivity at the Cretaceous/Tertiary boundary. Nature 337:6164.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0094-8373
  • EISSN: 1938-5331
  • URL: /core/journals/paleobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 9 *
Loading metrics...

Abstract views

Total abstract views: 271 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th August 2017. This data will be updated every 24 hours.