Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-21T02:26:50.327Z Has data issue: false hasContentIssue false

Comparison of gene expression patterns among Leishmania braziliensis clinical isolates showing a different in vitro susceptibility to pentavalent antimony

Published online by Cambridge University Press:  03 August 2010

V. ADAUI
Affiliation:
Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru Unit of Molecular Parasitology, Department of Parasitology, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
K. SCHNORBUSCH
Affiliation:
Unit of Molecular Parasitology, Department of Parasitology, Institute of Tropical Medicine Antwerp, Antwerp, Belgium Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
M. ZIMIC
Affiliation:
Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
A. GUTIÉRREZ
Affiliation:
Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
S. DECUYPERE
Affiliation:
Unit of Molecular Parasitology, Department of Parasitology, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
M. VANAERSCHOT
Affiliation:
Unit of Molecular Parasitology, Department of Parasitology, Institute of Tropical Medicine Antwerp, Antwerp, Belgium Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
S. DE DONCKER
Affiliation:
Unit of Molecular Parasitology, Department of Parasitology, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
I. MAES
Affiliation:
Unit of Molecular Parasitology, Department of Parasitology, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
A. LLANOS-CUENTAS
Affiliation:
Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
F. CHAPPUIS
Affiliation:
Hôpitaux Universitaires de Genève, Department of Community Medicine, Geneva, Switzerland
J. ARÉVALO
Affiliation:
Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
J.-C. DUJARDIN*
Affiliation:
Unit of Molecular Parasitology, Department of Parasitology, Institute of Tropical Medicine Antwerp, Antwerp, Belgium Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
*
*Corresponding author: Institute of Tropical Medicine, Unit of Molecular Parasitology, Nationalestraat 155, Antwerp B-2000, Belgium. Tel: +32 3 2476355. Fax: +32 3 2476359. E-mail: jcdujardin@itg.be

Summary

Introduction. Evaluation of Leishmania drug susceptibility depends on in vitro SbV susceptibility assays, which are labour-intensive and may give a biased view of the true parasite resistance. Molecular markers are urgently needed to improve and simplify the monitoring of SbV-resistance. We analysed here the gene expression profile of 21 L. braziliensis clinical isolates in vitro defined as SbV-resistant and -sensitive, in order to identify potential resistance markers. Methods. The differential expression of 13 genes involved in SbV metabolism, oxidative stress or housekeeping functions was analysed during in vitro promastigote growth. Results. Expression profiles were up-regulated for 5 genes only, each time affecting a different set of isolates (mosaic picture of gene expression). Two genes, ODC (ornithine decarboxylase) and TRYR (trypanothione reductase), showed a significantly higher expression rate in the group of SbV-resistant compared to the group of SbV-sensitive parasites (P<0·01). However, analysis of individual isolates showed both markers to explain only partially the drug resistance. Discussion. Our results might be explained by (i) the occurrence of a pleiotropic molecular mechanism leading to the in vitro SbV resistance and/or (ii) the existence of different epi-phenotypes not revealed by the in vitro SbV susceptibility assays, but interfering with the gene expression patterns.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ashutosh, , Sundar, S. and Goyal, N. (2007). Molecular mechanisms of antimony resistance in Leishmania. Journal of Medical Microbiology 56, 143153.Google Scholar
Arevalo, J., Ramirez, L., Adaui, V., Zimic, M., Tulliano, G., Miranda-Verastegui, C., Lazo, M., Loayza-Muro, R., De Doncker, S., Maurer, A., Chappuis, F., Dujardin, J. C. and Llanos-Cuentas, A. (2007). The influence of Leishmania (Viannia) species on the response to antimonial treatment of patients with American Tegumentary Leishmaniasis. Journal of Infectious Diseases 195, 18461851.Google Scholar
Da Silva, R. and Sacks, D. L. (1987). Metacyclogenesis is a major determinant of Leishmania promastigote virulence and attenuation. Infection and Immunity 55, 28022806.Google Scholar
Decuypere, S. (2007). Antimonial treatment failure in anthroponotic visceral leishmaniasis: towards improved tools and strategies for epidemiological surveillance and disease control. Ph.D. thesis. University of Antwerp, Antwerp, Belgium.Google Scholar
Decuypere, S., Rijal, S., Yardley, V., De Doncker, S., Laurent, T., Khanal, B., Chappuis, F. and Dujardin, J. C. (2005). Gene expression analysis of the mechanism of natural Sb(V) resistance in Leishmania donovani isolates from Nepal. Antimicrobial Agents and Chemotherapy 49, 46164621.Google Scholar
Decuypere, S., Vanaerschot, M., Rijal, S., Yardley, V., Maes, L., De Doncker, S., Chappuis, F. and Dujardin, J. C. (2008). Gene expression profiling of Leishmania (Leishmania) donovani: overcoming technical variation and exploiting biological variation. Parasitology 135, 183194.Google Scholar
Dias, F. C., Ruiz, J. C., Lopes, W. C., Squina, F. M., Renzi, A., Cruz, A. K. and Tosi, L. R. (2007). Organization of H locus conserved repeats in Leishmania (Viannia) braziliensis correlates with lack of gene amplification and drug resistance. Parasitology Research 101, 667676.Google Scholar
Dujardin, J. C. (2009). Structure, dynamics and function of Leishmania genome: resolving the puzzle of infection, genetics and evolution? Infection, Genetics and Evolution 9, 290297.Google Scholar
Gamboa, D., Van Eys, G., Victoir, K., Torres, K., Adaui, V., Arevalo, J. and Dujardin, J. C. (2007). Putative markers of infective life stages in Leishmania (Viannia) braziliensis. Parasitology 134, 16891698.Google Scholar
Garcia, A. L., Kindt, A., Quispe-Tintaya, K. W., Bermudez, H., Llanos, A., Arevalo, J., Bañuls, A. L., De Doncker, S., Le Ray, D. and Dujardin, J. C. (2005). American tegumentary leishmaniasis: antigen-gene polymorphism, taxonomy and clinical pleomorphism. Infection, Genetics and Evolution 5, 109116.Google Scholar
Hadighi, R., Mohebali, M., Boucher, P., Hajjaran, H., Khamesipour, A. and Ouellette, M. (2006). Unresponsiveness to Glucantime treatment in Iranian cutaneous leishmaniasis due to drug-resistant Leishmania tropica parasites. PLoS Medicine 3, e162.Google Scholar
Haimeur, A., Guimond, C., Pilote, S., Mukhopadhyay, R., Rosen, B. P., Poulin, R. and Ouellette, M. (1999). Elevated levels of polyamines and trypanothione resulting from overexpression of the ornithine decarboxylase gene in arsenite-resistant Leishmania. Molecular Microbiology 34, 726735.Google Scholar
Hellemans, J., Mortier, G., De Paepe, A., Speleman, F. and Vandesompele, J. (2007). qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biology 8, R19.Google Scholar
Laurent, T., Rijal, S., Yardley, V., Croft, S., De Doncker, S., Decuypere, S., Khanal, B., Singh, R., Schönian, G., Kuhls, K., Chappuis, F. and Dujardin, J. C. (2007). Epidemiological dynamics of antimonial resistance in Leishmania donovani: genotyping reveals a polyclonal population structure among naturally-resistant clinical isolates from Nepal. Infection, Genetics and Evolution 7, 206212.Google Scholar
Lira, R., Sundar, S., Makharia, A., Kenney, R., Gam, A., Saraiva, E. and Sacks, D. (1999). Evidence that the high incidence of treatment failures in Indian kala-azar is due to the emergence of antimony-resistant strains of Leishmania donovani. The Journal of Infectious Diseases 180, 564567.Google Scholar
Mandal, G., Wyllie, S., Singh, N., Sundar, S., Fairlamb, A. H. and Chatterjee, M. (2007). Increased levels of thiols protect antimony unresponsive Leishmania donovani field isolates against reactive oxygen species generated by trivalent antimony. Parasitology 134, 16791687.Google Scholar
McCarthy, D. J. and Smyth, G. K. (2009). Testing significance relative to a fold-change threshold is a TREAT. Bioinformatics 25, 765771.Google Scholar
Mittal, M. K., Rai, S., Ashutosh, , Ravinder, , Gupta, S., Sundar, S. and Goyal, N. (2007). Characterization of natural antimony resistance in Leishmania donovani isolates. American Journal of Tropical Medicine and Hygiene 76, 681688.Google Scholar
Mukherjee, A., Padmanabhan, P. K., Singh, S., Roy, G., Girard, I., Chatterjee, M., Ouellette, M. and Madhubala, R. (2007). Role of ABC transporter MRPA, gamma-glutamylcysteine synthetase and ornithine decarboxylase in natural antimony-resistant isolates of Leishmania donovani. Journal of Antimicrobial Chemotherapy 59, 204211.Google Scholar
Murray, H. W., Berman, J. D., Davies, C. R. and Saravia, N. G. (2005). Advances in leishmaniasis. Lancet 366, 15611577.Google Scholar
Neal, R. A. and Croft, S. L. (1984). An in-vitro system for determining the activity of compounds against the intracellular amastigote form of Leishmania donovani. Journal of Antimicrobial Chemotherapy 14, 463475.Google Scholar
Peacock, C. S., Seeger, K., Harris, D., Murphy, L., Ruiz, J. C., Quail, M. A., Peters, N., Adlem, E., Tivey, A., Aslett, M., Kerhornou, A., Ivens, A. and others. (2007). Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nature Genetics 39, 839847.Google Scholar
Rijal, S., Yardley, V., Chappuis, F., Decuypere, S., Khanal, B., Singh, R., Boelaert, M., De Doncker, S., Croft, S. and Dujardin, J. C. (2007). Antimonial treatment of visceral leishmaniasis: are current in vitro susceptibility assays adequate for prognosis of in vivo therapy outcome? Microbes and Infection 9, 529535.Google Scholar
Rojas, R., Valderrama, L., Valderrama, M., Varona, M. X., Ouellette, M. and Saravia, N. G. (2006). Resistance to antimony and treatment failure in human Leishmania (Viannia) infection. The Journal of Infectious Diseases 193, 13751383.Google Scholar
Rozen, S. and Skaletsky, H. (2000). Primer3 on the WWW for general users and for biologist programmers. Methods in Molecular Biology 132, 365386.Google Scholar
Sacks, D. L. (1989). Metacyclogenesis in Leishmania promastigotes. Experimental Parasitology 69, 100103.Google Scholar
Saxena, A., Worthey, E. A., Yan, S., Leland, A., Stuart, K. D. and Myler, P. J. (2003). Evaluation of differential gene expression in Leishmania major Friedlin procyclics and metacyclics using DNA microarray analysis. Molecular and Biochemical Parasitology 129, 103114.Google Scholar
Smith, D. F., Peacock, C. S. and Cruz, A. K. (2007). Comparative genomics: from genotype to disease phenotype in the leishmaniases. International Journal for Parasitology 37, 11731186.Google Scholar
Torres, D. C., Adaui, V., Alves, M. R., Romero, G. A. S., Arevalo, J., Cupolillo, E. and Dujardin, J. C. (2010). Gene expression profiling in Leishmania braziliensis and Leishmania guyanensis clinical isolates with different treatment outcome from Brazil. Infection Genetics and Evolution May 15 (Epub ahead of print).Google Scholar
Uliana, S. R., Goyal, N., Freymüller, E. and Smith, D. F. (1999). Leishmania: overexpression and comparative structural analysis of the stage-regulated meta 1 gene. Experimental Parasitology 92, 183191.Google Scholar
Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A. and Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3, research0034.I-0034.II.Google Scholar
Vermeersch, M., da Luz, R. I., Toté, K., Timmermans, J. P., Cos, P. and Maes, L. (2009). In vitro susceptibilities of Leishmania donovani promastigote and amastigote stages to antileishmanial reference drugs: practical relevance of stage-specific differences. Antimicrobial Agents and Chemotherapy 53, 38553859.Google Scholar
Yardley, V., Ortuño, N., Llanos-Cuentas, A., Chappuis, F., De Doncker, S., Ramirez, L., Croft, S., Arevalo, J., Adaui, V., Bermudez, H., Decuypere, S. and Dujardin, J. C. (2006). American tegumentary leishmaniasis: Is antimonial treatment outcome related to parasite drug susceptibility? The Journal of Infectious Diseases 194, 11681175.Google Scholar
Youden, W. J. (1950). Index for rating diagnostic tests. Cancer 3, 3235.Google Scholar