Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T01:02:11.732Z Has data issue: false hasContentIssue false

Identification of ABC transporters in Sarcoptes scabiei

Published online by Cambridge University Press:  03 February 2006

K. E. MOUNSEY
Affiliation:
Menzies School of Health Research, Darwin NT Australia Institute of Advanced Studies, Charles Darwin University, Darwin NT Australia
D. C. HOLT
Affiliation:
Menzies School of Health Research, Darwin NT Australia Institute of Advanced Studies, Charles Darwin University, Darwin NT Australia
J. McCARTHY
Affiliation:
Queensland Institute of Medical Research, University of Queensland, Brisbane, QLD Australia
S. F. WALTON
Affiliation:
Menzies School of Health Research, Darwin NT Australia Institute of Advanced Studies, Charles Darwin University, Darwin NT Australia

Abstract

We have identified and partially sequenced 8 ABC transporters from an EST dataset of Sarcoptes scabiei var. hominis, the causative agent of scabies. Analysis confirmed that most of the known ABC subfamilies are represented in the EST dataset including several members of the multidrug resistance protein subfamily (ABC-C). Although P-glycoprotein (ABC-B) sequences were not found in the EST dataset, a partial P-glycoprotein sequence was subsequently obtained using a degenerate PCR strategy and library screening. Thus a total of 9 potential S. scabiei ABC transporters representing the subfamilies A, B, C, E, F and H have been identified. Ivermectin is currently used in the treatment of hyper-infested (crusted) scabies, and has also been identified as a potentially effective acaricide for mass treatment programmes in scabies-endemic communities. The observation of clinical and in vitro ivermectin resistance in 2 crusted scabies patients who received multiple treatments has raised serious concerns regarding the sustainability of such programmes. One possible mechanism for ivermectin resistance is through ABC transporters such as P-glycoprotein. This work forms an important foundation for further studies to elucidate the potential role of ABC transporters in ivermectin resistance of S. scabiei.

Type
Research Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. ( 1990). Basic local alignment search tool. Journal of Molecular Biology 215, 403410.CrossRefGoogle Scholar
Ardelli, B. F. and Prichard, R. K. ( 2004). Identification of variant ABC-transporter genes among Onchocerca volvulus collected from ivermectin treated and untreated patients in Ghana, West Africa. Annals of Tropical Medicine and Parasitology 98, 371384.CrossRefGoogle Scholar
Ardelli, B. F., Guerriero, S. B. and Prichard, R. K. ( 2005). Genomic organization and effects of ivermectin selection on Onchocerca volvulus P-glycoprotein. Molecular and Biochemical Parasitology 143, 5866.CrossRefGoogle Scholar
Awadzi, K., Boakye, D. A., Edwards, G., Opoku, N. O., Attah, S. K., Osei-Atweneboana, M. Y., Lazdins-Helds, J. K., Ardrey, A. E., Addy, E. T., Quartey, B. T., Ahmed, K., Boatin, B. A. and Soumbey-Alley, E. W. ( 2004). An investigation of persistent microfilaridermias despite multiple treatments with ivermectin, in two onchocerciasis-endemic foci in Ghana. Annals of Tropical Medicine and Parasitology 98, 231249.CrossRefGoogle Scholar
Blackhall, W. J., Prichard, R. K. and Beech, R. N. ( 2003). Selection at a GABA receptor gene in Haemonchus contortus resistant to avermectins/milbemycins. Molecular and Biochemical Parasitology 131, 137145.CrossRefGoogle Scholar
Blackhall, W. J., Pouliot, J. F., Prichard, R. K. and Beech, R. N. ( 1998 a). Haemonchus contortus: Selection at a Glutamate-gated chloride channel gene in Ivermectin and Moxidectin selected strains. Experimental Parasitology 90, 4248.Google Scholar
Blackhall, W. J., Liu, H. Y., Xu, M., Prichard, R. K. and Beech, R. N. ( 1998 b). Selection at a P-glycoprotein gene in ivermectin- and moxidectin-selected strains of Haemonchus contortus. Molecular and Biochemical Parasitology 95, 193201.Google Scholar
Brossard, N. ( 1997). FLIP: a Unix C program used to find/translate orfs. Accessed via www.angis.org.au
Carapetis, J. R., Connors, C., Yarmirr, D., Krause, V. and Currie, B. J. ( 1997). Success of a scabies control program in an Australian Aboriginal community. The Pediatric Infectious Disease Journal 16, 494499.CrossRefGoogle Scholar
Currie, B. J. and Carapetis, J. R. ( 2000). Skin infections and infestations in Aboriginal communities in northern Australia. Australasian Journal of Dermatology 41, 139145.CrossRefGoogle Scholar
Currie, B. J., Connors, C. and Krause, V. ( 1994). Scabies programs in Aboriginal communities. The Medical Journal of Australia 161, 636637.Google Scholar
Currie, B. J., Harumal, P., McKinnon, M. and Walton, S. F. ( 2004). First documentation of in vivo and in vitro ivermectin resistance in Sarcoptes scabiei. Clinical Infectious Diseases 39, e8c12.CrossRefGoogle Scholar
Dean, M., Rzhetsky, A. and Allikmets, R. ( 2001). The human ATP-Binding Cassette (ABC) transporter superfamily. Genome Research 11, 11561166.CrossRefGoogle Scholar
Eng, J. K. and Prichard, R. K. ( 2005). A comparison of genetic polymorphism in populations of Onchocerca volvulus from untreated- and ivermectin-treated patients. Molecular and Biochemical Parasitology 142, 193202.CrossRefGoogle Scholar
Feng, X. P., Hayashi, J., Beech, R. N. and Prichard, R. K. ( 2002). Study of the nematode putative GABA type-A receptor subunits: evidence for modulation by ivermectin. Journal of Neurochemistry 83, 870878.CrossRefGoogle Scholar
Fischer, K., Holt, D. C., Harumal, P., Currie, B. J., Walton, S. F. and Kemp, D. J. ( 2003 a). Generation and characterization of cDNA clones from Sarcoptes scabiei var. hominis for an expressed sequence tag library: identification of homologues of house dust mite allergens. American Journal of Tropical Medicine and Hygeine 68, 6164.Google Scholar
Fischer, K., Holt, D. C., Wilson, P., Davis, J., Hewitt, V., Johnson, M., McGrath, A., Currie, B. J., Walton, S. F. and Kemp, D. J. ( 2003 b). Normalization of a cDNA library cloned in lambda ZAP by a long PCR and cDNA reassociation procedure. BioTechniques 34, 250252, 254.Google Scholar
Foote, S. J., Kyle, D. E., Martin, R. K., Oduola, A. M. J., Forsyth, K., Kemp, D. J. and Cowman, A. F. ( 1990). Several alleles of the multidrug-resistant gene are closely linked to chloroquine resistance in Plasmodium falciparum. Nature, London 345, 255258.CrossRefGoogle Scholar
Giudice, P., Chosidow, O. and Caumes, E. ( 2003). Ivermectin in dermatology. Journal of Drugs and Dermatology 2, 1321.Google Scholar
Gottesman, M. M., Hrycyna, C. A., Schoenlein, P. V., Germann, U. A. and Pastan, I. ( 1995). Genetic analysis of the multidrug transporter. Annual Review of Genetics 29, 607649.CrossRefGoogle Scholar
Grailles, M., Brey, P. T. and Roth, C. W. ( 2003). The Drosophila melanogaster multidrug-resistance protein 1 (MRP1) homolog has a novel gene structure containing two variable internal exons. Gene 307, 4150.CrossRefGoogle Scholar
Holt, D. C., Fischer, K., Allen, G. E., Wilson, D., Wilson, P., Slade, R., Currie, B. J., Walton, S. F. and Kemp, D. J. ( 2003). Mechanisms for a novel immune evasion strategy in the scabies mite Sarcoptes scabiei: a multigene family of inactivated serine proteases. The Journal of Investigative Dermatology 121, 14191424.Google Scholar
Huang, Y. J. and Prichard, R. K. ( 1999). Identification and stage-specific expression of two putative P-glycoprotein genes in Onchocerca volvulus. Molecular and Biochemical Parasitology 102, 273281.CrossRefGoogle Scholar
Huffam, S. E. and Currie, B. J. ( 1998). Ivermectin for Sarcoptes scabiei hyperinfestation. International Journal for Infectious Diseases 2, 152154.CrossRefGoogle Scholar
Israel, D. I. ( 1993). A PCR based method for high stringency screening of DNA libraries. Nucleic Acids Research 21, 26272631.CrossRefGoogle Scholar
Klugbauer, N. and Hofmann, F. ( 1996). Primary structure of a novel ABC transporter with a chromosomal localization on the band encoding the multidrug resistance-associated protein. FEBS Letters 391, 6165.CrossRefGoogle Scholar
Kwa, M. S. G., Okoli, M. N., Schulz-Key, H., Okongkwo, P. O. and Roos, M. H. ( 1998). Use of P-glycoprotein gene probes to investigate anthelmintic resistance in Haemonchus contortus and comparison with Onchocerca volvulus. International Journal for Parasitology 28, 12351240.CrossRefGoogle Scholar
Lawrence, G., Sheridan, J. and Speare, R. ( 1994). We can get rid of scabies: new treatment available soon. Medical Journal of Australia 161, 232.Google Scholar
Lawrence, G., Leafasia, J., Sheridan, J., Hills, S., Wate, J., Wate, C., Montgomery, J., Pandeya, N. and Purdie, D. ( 2005). Control of scabies, skin sores and haematuria in children in the Solomon Islands: another role for ivermectin. Bulletin of the World Health Organization 83, 3442.Google Scholar
Marton, M. J., Vazquez, C., Qui, H., Chakraburtty, K. and Hinnebusch, A. G. ( 1997). Evidence that GCN1 and GCN20, Translational regulators of GCN4, Function on elongating ribosomes in activation of eIF2a kinase GCN2. Molecular and Cellular Biology 17, 44744489.CrossRefGoogle Scholar
McDonald, M., Currie, B. J. and Carapetis, J. R. ( 2004). Acute rheumatic fever: a chink in the chain that links the heart to the throat? Lancet Infectious Diseases 4, 240245.Google Scholar
Misra, S., Crosby, M. A., Mungall, C. J., Matthews, B. B., Campbell, K. S., Hradecky, P., Huang, Y., Kaminker, J. S., Millburn, G. H., Prochnik, S. E., Smith, C. D., Tupy, J. L., Whitfied, E. J., Bayraktaroglu, L., Berman, B. P., Bettencourt, B. R., Celniker, S. E., de Grey, A. D., Drysdale, R. A., Harris, N. L., Richter, J., Russo, S., Schroeder, A. J., Shu, S. Q., Stapleton, M., Yamada, C., Ashburner, M., Gelbart, W. M., Rubin, G. M. and Lewis, S. E. ( 2002). Annotation of the Drosophila melanogaster euchromatic genome: a systematic review. Genome Biology 3, RESEARCH0083.CrossRefGoogle Scholar
Mounsey, K., Holt, D., Fischer, K., Kemp, D. J., Currie, B. and Walton, S. F. ( 2005). Analysis of Sarcoptes scabiei finds no evidence of infection with Wolbachia. International Journal for Parasitology 35, 131135.CrossRefGoogle Scholar
Njue, A. I., Hayashi, J., Kinne, L., Feng, X. P. and Prichard, R. K. ( 2004). Mutations in the extracellular domains of glutamate gated chloride channel a3 and B subunits from ivermectin-resistant Cooperia oncophora affect agonist sensitivity. Journal of Neurochemistry 89, 11371147.CrossRefGoogle Scholar
Nobmann, S., Bauer, B. and Fricker, G. ( 2001). Ivermectin excretion by isolated functionally intact brain endothelial capillaries. British Journal of Pharmacology 132, 722728.CrossRefGoogle Scholar
Price, R. N., Cassar, C., Brockman, A., Duraisingh, M., vanVugt, M., White, N. J., Nosten, F. and Krishna, S. ( 1999). The pfmdr1 gene is associated with a multidrug-resistance phenotype in Plasmodium falciparum from the western border of Thailand. Antimicrobial Agents and Chemotherapy 43, 29432949.Google Scholar
Price, R. N., Uhlemann, A., Brockman, A., McGready, R., Ashley, E., Phaipun, L., Patel, R., Laing, K., Looareesuwan, S., White, N. J., Nosten, F. and Krishna, S. ( 2004). Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. The Lancet 364, 438447.CrossRefGoogle Scholar
Roth, C. W., Holm, I., Graille, M., Dehoux, P., Rzhetsky, A., Wincker, P., Weissenbach, J. and Brey, P. T. ( 2003). Identification of the Anopheles gambiae ATP-binding cassette transporter superfamily genes. Molecules and Cells 15, 150158.Google Scholar
Roulet, A., Puel, O., Gesta, S., Lepage, J., Drag, M., Soll, M., Alvinerie, M. and Pineau, T. ( 2002). MDR-1 deficient genotype in Collie dogs hypersensitive to the P-glycoprotein substrate ivermectin. European Journal of Pharmacology 460, 8591.Google Scholar
Sangster, N. C., Bannan, S. C., Weiss, A. S., Nulf, S. C., Klein, R. D. and Geary, T. G. ( 1999). Haemonchus contortus: Sequence heterogeneity of internucleotide binding domains from P-glycoproteins and an association with avermectin/milbemycin resistance. Experimental Parasitiology 91, 250257.CrossRefGoogle Scholar
Sheps, J. A., Ralph, S., Zhao, Z., Baillie, D. L. and Ling, V. ( 2004). The ABC transporter gene family of C. elegans has implications for the evolutionary dynamics of multidrug resistance in eukaryotes. Genome Biology 5, R15.Google Scholar
Schinkel, A. H., Smit, J. J. M., vanTellingen, O., Beijnen, J. H., Wagenaar, E., vanDeemter, L., Mol, C. A. A. M., Van der valk, M. A., Robanus-Maandag, E. C., TeRiele, H. P. J., Berns, A. J. M. and Borst, P. ( 1994). Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77, 491502.CrossRefGoogle Scholar
Taplin, D., Meinking, T. L., Chen, J. A. and Sanchez, R. ( 1990). Comparison of crotamiton 10% cream (eurax) and permethrin 5% cream (elimite) for the treatment of scabies in children. Pediatric Dermatology 7, 6773.CrossRefGoogle Scholar
Walton, S. F., Myerscough, M. R. and Currie, B. J. ( 2000). Studies in vitro on the relative efficacy of current acaricides for Sarcoptes scabiei var. hominis. Transactions of the Royal Society of Tropical Medicine and Hygiene 94, 9296.CrossRefGoogle Scholar
Walton, S. F., McBroom, J., Mathews, J. D., Kemp, D. J. and Currie, B. J. ( 1999). Crusted Scabies: a molecular analysis of Sarcoptes scabiei variety hominis populations from patients with repeated infestations. Clinical Infectious Diseases 29, 12261230.CrossRefGoogle Scholar
Wolstenholme, A. J., Fairweather, I., Prichard, R. K., von Samson-Himmelstjerna, G. and Sangster, N. C. ( 2004). Drug resistance in veterinary helminths. Trends in Parasitology 20, 379476.CrossRefGoogle Scholar
Xu, M., Molento, M., Blackhall, W. J., Ribeiro, P., Beech, R. N. and Prichard, R. K. ( 1998). Ivermectin resistance in nematodes may be caused by alteration of a P-glycoprotein homolog. Molecular and Biochemical Parasitology 91, 327335.CrossRefGoogle Scholar