Hostname: page-component-797576ffbb-5676f Total loading time: 0 Render date: 2023-12-01T20:42:37.542Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Major acid endopeptidases of the blood-feeding monogenean Eudiplozoon nipponicum (Heteronchoinea: Diplozoidae)

Published online by Cambridge University Press:  18 February 2016

Department of Parasitology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44 Prague 2, Czech Republic
Department of Parasitology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44 Prague 2, Czech Republic
Department of Parasitology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44 Prague 2, Czech Republic Department of Botany and Zoology, Faculty of Science, Masaryk University, Kamenice 753/5 (A31), 625 00 Brno, Czech Republic
Department of Botany and Zoology, Faculty of Science, Masaryk University, Kamenice 753/5 (A31), 625 00 Brno, Czech Republic
RG Proteomics, Central European Institute of Technology, Masaryk University, Brno, Kamenice 753/5 (A26), 625 00 Brno Bohunice, Czech Republic
RG Proteomics, Central European Institute of Technology, Masaryk University, Brno, Kamenice 753/5 (A26), 625 00 Brno Bohunice, Czech Republic
Department of Parasitology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44 Prague 2, Czech Republic
*Corresponding author. Department of Parasitology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44 Prague 2, Czech Republic. E-mail:


In parasitic flatworms, acid endopeptidases are involved in crucial processes, including digestion, invasion, interactions with the host immune system, etc. In haematophagous monogeneans, however, no solid information has been available about the occurrence of these enzymes. Here we aimed to identify major cysteine and aspartic endopeptidase activities in Eudiplozoon nipponicum, an invasive haematophagous parasite of common carp. Employing biochemical, proteomic and molecular tools, we found that cysteine peptidase activities prevailed in soluble protein extracts and excretory/secretory products (ESP) of E. nipponicum; the major part was cathepsin L-like in nature supplemented with cathepsin B-like activity. Significant activity of the aspartic cathepsin D also occurred in soluble protein extracts. The degradation of haemoglobin in the presence of ESP and worm protein extracts was completely inhibited by a combination of cysteine and aspartic peptidase inhibitors, and diminished by particular cathepsin L, B and D inhibitors. Mass spectrometry revealed several tryptic peptides in ESP matching to two translated sequences of cathepsin L genes, which were amplified from cDNA of E. nipponicum and bioinformatically annotated. The dominance of cysteine peptidases of cathepsin L type in E. nipponicum resembles the situation in, e.g. fasciolid trematodes.

Research Article
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Abdul, A. M., Tsuji, N., Miyoshi, T., Khyrul Islam, M., Huang, X., Motobu, M. and Fujisaki, K. (2007). Characterization of asparaginyl endopeptidase, legumain induced by blood feeding in the ixodid tick Haemaphysalis longicornis . Insect Biochemistry and Molecular Biology 37, 911922.Google Scholar
Banerjee, R., Liu, J., Beatty, W., Pelosof, L., Klemba, M. and Goldberg, D. E. (2002). Four plasmepsins are active in the Plasmodium falciparum food vacuole, including a protease with an active-site histidine. Proceedings of the National Academy of Sciences of the United States of America 99, 990995.Google Scholar
Boldbaatar, D., Sikalizyo Sikasunge, C., Battsetseg, B., Xuan, X. and Fujisaki, K. (2006). Molecular cloning and functional characterization of an aspartic protease from the hard tick Haemaphysalis longicornis . Insect Biochemistry and Molecular Biology 36, 2536.Google Scholar
Braulke, T. and Bonifacino, J. S. (2009). Sorting of lysosomal proteins. Biochimica et Biophysica Acta 1793, 605614.Google Scholar
Brindley, P. J., Kalinna, B. H., Wong, J. Y., Bogitsh, B. J., King, L. T., Smyth, D. J., Verity, C. K., Abbenante, G., Brinkworth, R. I., Fairlie, D. P., Smythe, M. L., Milburn, P. J., Bielefeldt-Ohmann, H., Zheng, Y. and McManus, D. P. (2001). Proteolysis of human hemoglobin by schistosome cathepsin D. Molecular and Biochemical Parasitology 112, 103112.Google Scholar
Brinen, L. S., Que, X., McKerrow, J. H. and Reed, S. L. (2000). Homology modeling of Entamoeba histolytica cysteine proteinases reveals the basis for cathepsin L-like structure with cathepsin B-like specificity. Archives of Medical Research 31, S63S64.Google Scholar
Brinker, A., Weber, E., Stoll, D., Voigt, J., Müller, A., Sewald, N., Jung, G., Wiesmüller, K. H. and Bohley, P. (2000). Highly potent inhibitors of human cathepsin L identified by screening combinatorial pentapeptide amide collections. European Journal of Biochemistry/FEBS 267, 50855092.Google Scholar
Buchmann, K. and Brescini, J. (2006). Monogenea. In Fish Diseases and Disorders, Volume 1, 2nd Edn. pp. 297344. CABI, Wallingford.Google Scholar
Caffrey, C. R. and Ruppel, A. (1997). Cathepsin B-like activity predominates over cathepsin L-like activity in adult Schistosoma mansoni and S. japonicum . Parasitology Research 83, 632635.Google Scholar
Caffrey, C. R., Mathieu, M. A., Gaffney, A. M., Salter, J. P., Sajid, M., Lucas, K. D., Franklin, C., Bogyo, M. and McKerrow, J. H. (2000). Identification of a cDNA encoding an active asparaginyl endopeptidase of Schistosoma mansoni and its expression in Pichia pastoris . FEBS Letters 466, 244248.Google Scholar
Caffrey, C. R., McKerrow, J. H., Salter, J. P. and Sajid, M. (2004). Blood “n” guts: an update on schistosome digestive peptidases. Trends in Parasitology 20, 241248.Google Scholar
Coulombe, R., Grochulski, P., Sivaraman, J., Ménard, R., Mort, J. S. and Cygler, M. (1996). Structure of human procathepsin L reveals the molecular basis of inhibition by the prosegment. EMBO Journal 15, 54925503.Google Scholar
Dalton, J. P., Hola-Jamriska, L. and Brindley, P. J. (1995). Asparaginyl endopeptidase activity in adult Schistosoma mansoni . Parasitology 111, 575580.Google Scholar
Dalton, J. P., Clough, K. A., Jones, M. K. and Brindley, P. J. (1996). Characterization of the cathepsin-like cysteine proteinases of Schistosoma mansoni . Infection and Immunity 64, 13281334.Google Scholar
Dalton, J. P., Neill, S. O., Stack, C., Collins, P., Walshe, A., Sekiya, M., Doyle, S., Mulcahy, G., Hoyle, D., Khaznadji, E., Moire, N., Brennan, G., Mousley, A., Kreshchenko, N., Maule, A. G. and Donnelly, S. M. (2003). Fasciola hepatica cathepsin L-like proteases: biology, function, and potential in the development of first generation liver fluke vaccines. International Journal for Parasitology 33, 11731181.Google Scholar
Dalton, J. P., Skelly, P. and Halton, D. W. (2004). Role of the tegument and gut in nutrient uptake by parasitic platyhelminths. Canadian Journal of Zooology. 82, 211232.Google Scholar
Delcroix, M., Sajid, M., Caffrey, C. R., Lim, K. C., Dvořák, J., Hsieh, I., Bahgat, M., Dissous, C. and McKerrow, J. H. (2006). A multienzyme network functions in intestinal protein digestion by a platyhelminth parasite. Journal of Biological Chemistry 281, 3931639329.Google Scholar
Dvořák, J., Delcroix, M., Rossi, A., Vopálenský, V., Pospíšek, M., Šedinová, M., Mikeš, L., Sajid, M., Sali, A., McKerrow, J. H., Horák, P. and Caffrey, C. R. (2005). Multiple cathepsin B isoforms in schistosomula of Trichobilharzia regenti: identification, characterisation and putative role in migration and nutrition. International Journal for Parasitology 35, 895910.Google Scholar
Dvořák, J., Mashiyama, S. T., Sajid, M., Braschi, S., Delcroix, M., Schneider, E. L., McKerrow, W. H., Bahgat, M., Hansell, E., Babbitt, P. C., Craik, C. S., McKerrow, J. H. and Caffrey, C. R. (2009). SmCL3, a gastrodermal cysteine protease of the human blood fluke Schistosoma mansoni . PLoS Neglected Tropical Diseases 3, e449.Google Scholar
Eakin, A. E., Bouvier, J., Sakanari, J. A., Craik, C. S. and McKerrow, J. H. (1990). Amplification and sequencing of genomic DNA fragments encoding cysteine proteases from protozoan parasites. Molecular and Biochemical Parasitology 39, 18.Google Scholar
Gillmor, S. A., Craik, C. S. and Fletterick, R. J. (1997). Structural determinants of specificity in the cysteine protease cruzain. Protein Science: a Publication of the Protein Society 6, 16031611.Google Scholar
Greenbaum, D., Baruch, A., Hayrapetian, L., Darula, Z., Burlingame, A., Medzihradszky, K. F. and Bogyo, M. (2002). Chemical approaches for functionally probing the proteome. Molecular & Cellular Proteomics: MCP 1, 6068.Google Scholar
Groves, M. R., Coulombe, R., Jenkins, J. and Cygler, M. (1998). Structural basis for specificity of papain-like cysteine protease proregions toward their cognate enzymes. Proteins 32, 504514.Google Scholar
Halton, D. W. and Stranock, S. D. (1976). The fine structure and histochemistry of the caecal epithelium of Calicotyle kröyeri (Monogenea: Monopisthocotylea). International Journal for Parasitology 6, 253263.Google Scholar
Heussler, V. and Dobbelaere, D. (1996). Cloning of a protease gene family in Fasciola hepatica using the polymerase chain reaction (PCR). Schweizer Archiv für Tierheilkunde 138, 125132.Google Scholar
Hirazawa, N., Umeda, N., Hatanaka, A. and Kuroda, A. (2006). Characterization of serine proteases in the monogenean Neobenedenia girellae . Aquaculture 255, 188195.Google Scholar
Hodová, I., Matějusová, I. and Gelnar, M. (2010). The surface topography of Eudiplozoon nipponicum (Monogenea) developmental stages parasitizing carp (Cyprinus carpio L.). Central European Journal of Biology 5, 702709.Google Scholar
Horn, M., Nussbaumerová, M., Šanda, M., Kovářová, Z., Srba, J., Franta, Z., Sojka, D., Bogyo, M., Caffrey, C. R., Kopáček, P. and Mareš, M. (2009). Hemoglobin digestion in blood-feeding ticks: mapping a multipeptidase pathway by functional proteomics. Chemistry & Biology 16, 10531063.Google Scholar
Chan, V. J., Selzer, P. M., McKerrow, J. H. and Sakanari, J. A. (1999). Expression and alteration of the S2 subsite of the Leishmania major cathepsin B-like cysteine protease. Biochemical Journal 340, 113117.Google Scholar
Chauhan, S. S., Ray, D., Kane, S. E., Willingham, M. C. and Gottesman, M. M. (1998). Involvement of carboxy–terminal amino acids in secretion of human lysosomal protease cathepsin L. Biochemistry 37, 85848594.Google Scholar
Choe, Y., Leonetti, F., Greenbaum, D. C., Lecaille, F., Bogyo, M., Brömme, D., Ellman, J. A. and Craik, C. S. (2006). Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. Journal of Biological Chemistry 281, 1282412832.Google Scholar
Jennings, J. B. (1959). Studies on digestion in the monogenetic trematode Polystoma integerrimum . Journal of Helminthology 33, 197204.Google Scholar
Jerala, R., Zerovnik, E., Kidric, J. and Turk, V. (1998). pH-induced conformational transitions of the propeptide of human cathepsin L. A role for a molten globule state in zymogen activation. Journal of Biological Chemistry 273, 1149811504.Google Scholar
Karrer, K. M., Peiffer, S. L. and DiTomas, M. E. (1993). Two distinct gene subfamilies within the family of cysteine protease genes. Proceedings of the National Academy of Sciences of the United States of America 90, 30633067.Google Scholar
Kawatsu, H. (1978). Studies on the anemia of fish - IX. Hypochromic microcytic anemia of crusian carp caused by infestation with a trematode, Diplozoon nipponicum . Bulletin of the Japanese Society of Scientific Fisheries 44, 13151319.Google Scholar
Konstanzová, V., Koubková, B., Kašný, M., Ilgová, J., Dzika, E. and Gelnar, M. (2015). Ultrastructure of the digestive tract of Paradiplozoon homoion (Monogenea). Parasitology Research 114, 14851494.Google Scholar
Li, A. H., Moon, S.-U., Park, Y.-K., Na, B.-K., Hwang, M.-G., Oh, C.-M., Cho, S.-H., Kong, Y., Kim, T.-S. and Chung, P.-R. (2006). Identification and characterization of a cathepsin L-like cysteine protease from Taenia solium metacestode. Veterinary Parasitology 141, 251259.Google Scholar
Llewellyn, J. (1954). Observations on the food and the gut pigment of the Polyopisthocotylea (Trematoda: Monogenea). Parasitology 44, 428–37.Google Scholar
Lopez-Ordoñez, T., Rodriguez, M. H. and Hernández-Hernández, F. D. (2001). Characterization of a cDNA encoding a cathepsin L-like protein of Rhodnius prolixus . Insect Molecular Biology 10, 505511.Google Scholar
Ni, X., Canuel, M. and Morales, C. R. (2006). The sorting and trafficking of lysosomal proteins. Histology and Histopathology 21, 899913.Google Scholar
Oliver, E. M., Skuce, P. J., McNair, C. M. and Knox, D. P. (2006). Identification and characterization of an asparaginyl proteinase (legumain) from the parasitic nematode, Haemonchus contortus . Parasitology 133, 237244.Google Scholar
Rao, Y. Z. and Yang, T. B. (2007). cDNA cloning, mRNA expression and recombinant expression of a cathepsin L-like cysteine protease from Neobenedenia melleni (Monogenea: Capsalidae). Aquaculture 269, 4153.Google Scholar
Renard, G., Garcia, J. F., Cardoso, F. C., Richter, M. F., Sakanari, J. A., Ozaki, L. S., Termignoni, C. and Masuda, A. (2000). Cloning and functional expression of a Boophilus microplus cathepsin L-like enzyme. Insect Biochemistry and Molecular Biology 30, 10171026.Google Scholar
Robinson, M. W., Dalton, J. P. and Donnelly, S. (2008). Helminth pathogen cathepsin proteases: it's a family affair. Trends in Biochemical Sciences 3, 601608.Google Scholar
Sajid, M. and McKerrow, J. H. (2002). Cysteine proteases of parasitic organisms. Molecular and Biochemical Parasitology 120, 121.Google Scholar
Sajid, M., McKerrow, J. H., Hansell, E., Mathieu, M. A., Lucas, K. D., Hsieh, I., Greenbaum, D., Bogyo, M., Salter, J. P., Lim, K. C., Franklin, C., Kim, J.-H. and Caffrey, C. R. (2003). Functional expression and characterization of Schistosoma mansoni cathepsin B and its trans-activation by an endogenous asparaginyl endopeptidase. Molecular and Biochemical Parasitology 131, 6575.Google Scholar
Smyth, J. D. and Halton, D. W. (1983). The Physiology of Trematodes. Cambridge University Press, Cambridge, UK.Google Scholar
Sojka, D., Hajdušek, O., Dvořák, J., Sajid, M., Franta, Z., Schneider, E. L., Craik, C. S., Vancová, M., Burešová, V., Bogyo, M., Sexton, K. B., McKerrow, J. H., Caffrey, C. R. and Kopáček, P. (2007). IrAE: an asparaginyl endopeptidase (legumain) in the gut of the hard tick Ixodes ricinus . International Journal for Parasitology 37, 713724.Google Scholar
Sojka, D., Franta, Z., Horn, M., Hajdušek, O., Caffrey, C. R., Mareš, M. and Kopáček, P. (2008). Profiling of proteolytic enzymes in the gut of the tick Ixodes ricinus reveals an evolutionarily conserved network of aspartic and cysteine peptidases. Parasites & Vectors 1, 7.Google Scholar
Sojka, D., Franta, Z., Frantová, H., Bartošová, P., Horn, M., Váchová, J., O'Donoghue, A. J., Eroy-Reveles, A. A., Craik, C. S., Knudsen, G. M., Caffrey, C. R., McKerrow, J. H., Mareš, M. and Kopáček, P. (2012). Characterization of gut-associated cathepsin D hemoglobinase from tick Ixodes ricinus (IrCD1). Journal of Biological Chemistry 287, 2115221163.Google Scholar
Sonenshine, D. E. (1991). Biology of Ticks Volume 1. Oxford University Press, New York.Google Scholar
Steverding, D. (2011). The cathepsin B-selective inhibitors CA-074 and CA-074Me inactivate cathepsin L under reducing conditions. Open Enzyme Inhibition Journal 4, 1116.Google Scholar
Steverding, D., Sexton, D. W., Wang, X., Gehrke, S. S., Wagner, G. K. and Caffrey, C. R. (2012). Trypanosoma brucei: chemical evidence that cathepsin L is essential for survival and a relevant drug target. International Journal for Parasitology 42, 481488.Google Scholar
Tinsley, R. C. (1973). Ultrastructural studies on the form and function of the gastrodermis of Protopolystoma xenopi (Monogenoidea: Polyopisthocotylea). Biological Bulletin 144, 541555.Google Scholar
Turk, B., Turk, D. and Turk, V. (2000). Lysosomal cysteine proteases: more than scavengers. Biochimica et Biophysica Acta 1477, 98111.Google Scholar
Valigurová, A., Hodová, I., Sonnek, R., Koubková, B. and Gelnar, M. (2011). Eudiplozoon nipponicum in focus: monogenean exhibiting a highly specialized adaptation for ectoparasitic lifestyle. Parasitology Research 108, 383394.Google Scholar
Verity, C. K., Loukas, A., McManus, D. P. and Brindley, P. J. (2001). Schistosoma japonicum cathepsin D aspartic protease cleaves human IgG and other serum components. Parasitology 122, 415421.Google Scholar
Vernet, T., Berti, P. J., de Montigny, C., Musil, R., Tessier, D. C., Ménard, R., Magny, M. C., Storer, A. C. and Thomas, D. Y. (1995). Processing of the papain precursor. The ionization state of a conserved amino acid motif within the Pro region participates in the regulation of intramolecular processing. Journal of Biological Chemistry 270, 1083810846.Google Scholar
Williamson, A. L., Brindley, P. J., Knox, D. P., Hotez, P. J. and Loukas, A. (2003 a). Digestive proteases of blood-feeding nematodes. Trends in Parasitology 19, 417423.Google Scholar
Williamson, A. L., Brindley, P. J., Abbenante, G., Datu, B. J. D., Prociv, P., Berry, C., Girdwood, K., Pritchard, D. I., Fairlie, D. P., Hotez, P. J., Zhan, B. and Loukas, A. (2003 b). Hookworm aspartic protease, Na-APR-2, cleaves human hemoglobin and serum proteins in a host-specific fashion. Journal of Infectious Diseases 187, 484494.Google Scholar
Williamson, A. L., Lecchi, P., Turk, B. E., Choe, Y., Hotez, P. J., McKerrow, J. H., Cantley, L. C., Sajid, M., Craik, C. S. and Loukas, A. (2004). A multi-enzyme cascade of hemoglobin proteolysis in the intestine of blood-feeding hookworms. Journal of Biological Chemistry 279, 3595035957.Google Scholar