Hostname: page-component-594f858ff7-r29tb Total loading time: 0 Render date: 2023-06-08T02:29:39.832Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "corePageComponentUseShareaholicInsteadOfAddThis": true, "coreDisableSocialShare": false, "useRatesEcommerce": true } hasContentIssue false

Ultrastructure and molecular phylogeny of Pleistophora hyphessobryconis (Microsporidia) infecting hybrid jundiara (Leiarius marmoratus × Pseudoplatystoma reticulatum) in a Brazilian aquaculture facility

Published online by Cambridge University Press:  02 November 2015

Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, USA
Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
Clinical Veterinary Medical Department, Faculty of Agronomy, Veterinary Medicine and Animal Science, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
Clinical Veterinary Medical Department, Faculty of Agronomy, Veterinary Medicine and Animal Science, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
Regional Diagnostic Laboratory, Federal University of Pelotas, Pelotas, RS, Brazil
Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, USA Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan 48824, USA
*Corresponding author. Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48824, USA. E-mail:


A microsporidian infecting the skeletal muscle of hybrid jundiara (Leiarius marmoratus × Pseudoplatystoma reticulatum) in a commercial aquaculture facility in Brazil is described. Affected fish exhibited massive infections in the skeletal muscle that were characterized by large opaque foci throughout the affected fillets. Histologically, skeletal muscle was replaced by inflammatory cells and masses of microsporidial developmental stages. Generally pyriform spores had a wrinkled bi-layer spore wall and measured 4·0 × 6·0 µm. Multinucleate meronts surrounded by a simple plasma membrane were observed. The polar filament had an external membrane and a central electron dense mass. The development of sporoblasts within a sporophorous vesicle appeared synchronized. Ultrastructural observations and molecular analysis of 16S rDNA sequences revealed that the microsporidian was Pleistophora hyphessobryconis. This study is the first report of a P. hyphessobryconis infection in a non-ornamental fish.

Research Article
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403410.CrossRefGoogle ScholarPubMed
Austin, B. and Austin, D. A. (2007). Bacterial Fish Pathogens: Disease of Farmed and Wild Fish, Springer Science and Business Media, New York, USA.Google Scholar
Baker, M. D., Vossbrinck, C. R., Didier, E. S., Maddox, J. V. and Shadduck, J. A. (1995). Small subunit ribosomal DNA phylogeny of various microsporidia with emphasis on AIDS related forms. Journal of Eukaryotic Microbiology 42, 564570.CrossRefGoogle ScholarPubMed
Barber, I., Davies, A. J., Ironside, J. E., Forsgren, E. and Amundsen, T. (2008). First record of a Kabatana sp. microsporidium infecting fish in the Atlantic Ocean. Diseases of Aquatic Organisms 83, 145152.CrossRefGoogle Scholar
Canning, E. U. and Nicholas, J. P. (1980). Genus Pleistophora (Phylum Microspora): redescription of the type species, Pleistophora typicalis Gurley, 1893 and ultrastructural characterization of the genus. Journal of Fish Diseases 3, 317338.CrossRefGoogle Scholar
Casal, G., Matos, E., Teles-Grilo, L. and Azevedo, C. (2010). Ultrastructural and molecular characterization of a new microsporidium parasite from the Amazonian fish, Gymnorhamphichthys rondoni (Rhamphichthyidae). Journal of Parasitology 96, 11551163.CrossRefGoogle Scholar
Darriba, D., Taboada, G. L., Doallo, R. and Posada, D. (2012). ModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.CrossRefGoogle Scholar
de Pádua, S. B., Ishikawa, M. M., Ventura, A. S., Jerônimo, G. T., Martins, M. L. and Tavares, L. E. R. (2013). Brazilian catfish parasitized by Epistylis sp. (Ciliophora, Epistylididae), with description of parasite intensity score. Parasitology Research 112, 443446.CrossRefGoogle Scholar
Diamant, A., Goren, M., Yokeş, M. B., Galil, B. S., Klopman, Y., Huchon, D., Szitenberg, A. and Karhan, S. Ü. (2010). Dasyatispora levantinae gen. et sp. nov., a new microsporidian parasite from the common stingray Dasyatis pastinaca in the eastern Mediterranean. Diseases of Aquatic Organisms 2, 137–135.CrossRefGoogle Scholar
Dyková, I. and Lom, J. (1980). Tissue reactions to microsporidian infections in fish. Journal of Fish Diseases 3, 265283.CrossRefGoogle Scholar
Food and Agriculture Organization of the United Nations (2015). Fishery and Aquaculture Country Profiles. Brazil Country Profile Fact Sheets, FAO Fisheries and Aquaculture Department, Rome, Italy. Google Scholar
Ghosh, K. and Weiss, L. M. (2009). Molecular diagnostic tests for Microsporidia. Interdisciplinary Perspectives on Infectious Diseases 2009, 926521.CrossRefGoogle ScholarPubMed
Gomori, G. A. (1950). A rapid one-step trichrome stain. American Journal of Clinical Pathology 20, 661.CrossRefGoogle ScholarPubMed
Grabda, J. (1978). Studies on parasitic infestation of blue whiting (Micromesistius sp.) with respect to the fish utilization for consumption. Acta Ichthyologica et Piscatoria 8, 2938.CrossRefGoogle Scholar
Hashimoto, D. T., Senhorini, J. A., Foresti, F. and Porto-Foresti, F. (2012). Interspecific fish hybrids in Brazil: management of genetic resources for sustainable use. Reviews in Aquaculture 4, 108118.CrossRefGoogle Scholar
Huelsenbeck, J. P. and Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754755.CrossRefGoogle ScholarPubMed
Li, K., Chang, O., Wang, F., Liu, C., Liang, H. and Wu, S. (2012). Ultrastructure, development, and molecular phylogeny of Pleistophora hyphessobryconis, a broad host microsporidian parasite of Puntius tetrazona . Parasitology Research 111, 17151724.CrossRefGoogle ScholarPubMed
Lillie, R. D. (1965). Histopathologic Technic and Practical Histochemistry, McGraw-Hill, New York, USA.Google Scholar
Lom, J. (2002). Catalogue of described genera and species of microsporidians parasitic in fish. Systematic Parasitology 53, 8199.CrossRefGoogle Scholar
Lom, J. and Corliss, J. O. (1967). Ultrastructural observations on the development of the microsporidian protozoon Plistophora hyphessobryconis Schaperclaus. Journal of Protozoology 14, 141152.CrossRefGoogle Scholar
Lom, J. and Nilsen, F. (2003). Fish microsporidia: fine structural diversity and phylogeny. International Journal for Parasitology 33, 107127.CrossRefGoogle ScholarPubMed
Luna, L. G. (1968). Manual of Histologic and Special Staining Techniques of the Armed Forces Institute of Pathology, 3rd Edn. McGraw-Hill, New York, USA.Google Scholar
McGourty, K. R., Kinziger, A. P., Hendrickson, G. L., Goldsmith, G. H., Casal, G. and Azevedo, C. (2007). A new microsporidian infecting the musculature of the endangered tidewater goby (Gobiidae). Journal of Parasitology 93, 655660.CrossRefGoogle Scholar
Michel, C., Messiaen, S. and Bernardet, J. F. (2002). Muscle infections in imported neon tetra, Paracheirodon innesi Myers: limited occurrence of microsporidia and predominance of severe forms of columnaris disease caused by an Asian genomovar of Flavobacterium columnare . Journal of Fish Diseases 25, 253263.CrossRefGoogle Scholar
Nigrelli, R. F. (1946). Parasites and diseases of the ocean pout, Macrozoarces americanus . Bulletin of the Bingham Oceanographic Collection 9, 187202.Google Scholar
Novotný, L. and Dvořák, P. (2006). Manifestation of mycobacteriosis in cardinal tetras Paracheirodon axelrodi (Schultz, 1956) during the Pleistophora hyphessobryconis (Schäperclaus, 1941) infection. Folia Veterinaria 50, 8082.Google Scholar
Pekkarinen, M. (1996). Ultrastructure of the wall of the sporophorous vesicle during sporogony of Pleistophora mirandellae (Protozoa: Microspora). Parasitology Research 82, 740742.CrossRefGoogle Scholar
Pekkarinen, M., Lom, J. and Nilsen, F. (2002). Ovipleistophora gen. n., a new genus for Pleistophora mirandellae-like microsporidia. Diseases of Aquatic Organisms 48, 133142.CrossRefGoogle Scholar
Piron, R. D. (1978). Spontaneous skeletal deformities in the Zebra Danio (Brachydanio rerio) bred for fish toxicity tests. Journal of Fish Biology 13, 7983.CrossRefGoogle Scholar
Rodriguez, F., Oliver, J., Marin, A. and Medina, J. R. (1990). The general stochastic model of nucleotide substitution. Journal of Theoretical Biology 142, 485501.CrossRefGoogle ScholarPubMed
Sanders, J. L., Lawrence, C., Nichols, D. K., Brubaker, J. F., Peterson, T. S., Murray, K. N. and Kent, M. L. (2010). Pleistophora hyphessobryconis (Microsporidia) infecting zebrafish Danio rerio in research facilities. Diseases of Aquatic Organism 91, 4756.CrossRefGoogle ScholarPubMed
Sanders, J. L., Watral, V. and Kent, M. L. (2012). Microsporidiosis in zebrafish research facilities. Institute for Laboratory Animal Research Journal 53, 106113.CrossRefGoogle ScholarPubMed
Schäperclaus, W. (1941). Eine neue Mikrosporidien-krankheit beim Neonfisch und seinen Verwandten. Wochenschrift für Aquarienund Terrarienkunde 39, 381384.Google Scholar
Shaw, R. W. and Kent, M. L. (1999). Fish microsporidia. In The Microsporidia and Microsporidiosis (ed. Wittner, M. and Weiss, L. M.), pp. 418446. American Society for Microbiology Press, Washington, DC, USA.CrossRefGoogle Scholar
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739.CrossRefGoogle ScholarPubMed
Thieme, H. (1954). Pleistophora hyphessobryconis Schaperclaus, ihre Entwicklung und die durch den Parasiten hervorgerufenen liistologischen Veranderungen des Wirtsgewebes, Diplomarbeit, Universitat Halle, Halle, Germany.Google Scholar
Ventura, A. S., Jerônimo, G. T., Gonçalves, E. L. T., Tamporoski, B. R. F., Martins, M. L. and Ishikawa, M. M. (2013). Parasitic fauna of cachapinta and jundiara catfish hybrids in the early stages of development. Pesquisa Agropecuária Brasileira 48, 943949.CrossRefGoogle Scholar
Vossbrinck, C. R. and Woese, C. R. (1986). Eukaryotic ribosomes that lack a 5·8 S RNA. Nature 320, 287288.CrossRefGoogle Scholar