Skip to main content Accessibility help
×
×
Home

An investigation of chemotaxis in the insect parasitic nematode Heterorhabditis bacteriophora

  • D. M. O'HALLORAN (a1) and A. M. BURNELL (a1)

Abstract

We tested the chemotactic responses of dauer juvenile stages (DJs) of the insect parasitic nematode Heterorhabditis bacteriophora to a variety of compounds that are known to be highly attractive or highly repellent to Caenorhabditis elegans. While H. bacteriophora DJs respond to alcohols and some aromatic compounds as well as to host metabolites such as uric acid and CO2, the most notable difference in the responses of these two nematodes is that H. bacteriophora DJs are unresponsive to a large number of compounds which C. elegans finds highly attractive. The latter compounds are typical by-products of bacterial metabolism and include aldehydes, esters, ketones and short-chain alcohols. While C. elegans finds long-chain alcohols (e.g. 1-heptanol and 1-octanol) repellent and short-chain alcohols highly attractive, H. bacteriophora DJs are strongly attracted to 1-heptanol, 1-octanol and 1-nonanol and find short-chain alcohols to be only slightly attractive. Parasitic-stage H. bacteriophora nematodes show a very weak chemotactic response to volatile molecules that DJs find highly attractive. Our results suggest that, associated with the adoption of a parasitic mode of life by Heterorhabditis, there was an adaptive change in chemotactic behaviour of the infective stages, resulting in a decreased sensitivity to volatile by-products of bacterial metabolism and an increased sensitivity towards long-chain alcohols and other insect-specific volatiles and possibly also to herbivore-induced plant volatiles.

Copyright

Corresponding author

Tel: +353 1708 3840. Fax: +353 1708 3845. E-mail: ann.burnell@may.ie

References

Hide All

REFERENCES

ANDREW, P. A. & NICHOLAS, W. L. (1976). Effect of bacteria on dispersal of Caenorhabditis elegans (Rhabditidae). Nematologica 221, 451461.
ASHTON, F. T., LI, J. & SCHAD, G. A. (1999). Chemo- and thermosensory neurons: structure and function in animal parasitic nematodes. Veterinary Parasitology 84, 297316.
BALAN, J. (1985). Measuring minimal concentrations of attractants detected by the nematode Panagrellus redivivus. Journal of Chemical Ecology 11, 105111.
BALANOVA, J. & BALAN, J. (1991). Chemotaxis-controlled search for food by the nematode Panagrellus redivivus. Biologia 46, 257263.
BARGMANN, C. I., HARTWEIG, E. & HORVITZ, H. R. (1993). Odorant selective genes and neurons mediate olfaction in C. elegans. Cell 74, 515527.
BARGMANN, C. I. & HORVITZ, H. R. (1991). Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7, 729742.
BARGMANN, C. I. & MORI, I. (1997). Chemotaxis and thermotaxis. In C. elegans II (ed. Riddle, D. L., Blumenthal, T., Meyer, B. J. & Preiss, J. R.), pp. 717738. Cold Spring Harbor Press, New York.
BATE, N. J., RILEY, J. C. M., THOMPSON, J. E. & ROTHSTEIN, S. J. (1998). Quantitative and qualitative differences in C-6-volatile production from the lipoxygenase pathway in an alcohol dehydrogenase mutant of Arabidopsis thaliana. Physiologia Plantarum 104, 97104.
BLAXTER, M. L., DE LEY, P., GAREY, J. R., LIU, L. X., SCHELDEMAN, P., VIERSTRAETE, A., VANFLETEREN, J. R., MACKEY, L. Y., DORRIS, M., FRISSE, L. M., VIDA, J. T. & THOMAS, W. K. (1998). A molecular evolutionary framework for the phylum Nematoda. Nature, London 392, 7175.
BOEMARE, N. E., AKHURST, R. J. & MOURANT, R. G. (1993). DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen-nov. International Journal of Systematic Bacteriology 43, 249255.
BRENNER, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 7194.
BUCK, L. & AXEL, R. (1991). A novel multigene family may encode odorant receptors – a molecular-basis for odor recognition. Cell 65, 175187.
CASSADA, R. C. & RUSSELL, R. L. (1975). The dauer larva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Developmental Biology 46, 326342.
CLYNE, P. J., WARR, C. G., FREEMAN, M. R., LESSING, D., KIM, J. H. & CARLSON, J. R. (1999). A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22, 327338.
CONSOULAS, C., DUCH, C., BAYLINE, R. J. & LEVINE, R. B. (2000). Behavioral transformations during metamorphosis: remodeling of neural and motor systems. Brain Research Bulletin 53, 571583.
CULOTTI, L. G. & RUSSELL, R. L. (1978). Osmotic avoidance defective mutants of the nematode Caenorhabditis elegans. Genetics 90, 243256.
DICKE, M. (1999). Are herbivore-induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods? Entomologia Experimentalis et Applicata 91, 131142.
DOLAN, K. M., JONES, J. T. & BURNELL, A. M. (2002). Detection of changes occurring during recovery from the dauer stage in Heterorhabditis bacteriophora. Parasitology 125, 7181.
DUBIN, A. E., HEALD, N. L., CLEVELAND, B., CARLSON, J. R. & HARRIS, G. L. (1995). Scutoid mutation of Drosophila melanogaster specifically decreases olfactory responses to short-chain acetate esters and ketones. Journal of Neurobiology 28, 214233.
DUSENBERY, D. B. (1974). Analysis of chemotaxis in the nematode Caenorhabditis elegans by countercurrent separation. Journal of Experimental Zoology 188, 4147.
FORST, S., DOWDS, B., BOEMARE, N. & STACKEBRANDT, E. (1997). Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annual Review of Microbiology 51, 4772.
GAUGLER, R., LEBECK, L., NAGAKI, B. & BOUSH, G. M. (1980). Orientation of the entomogenous nematode Neoaplectana carpocapsae to carbon dioxide. Environmental Entomology 9, 649652.
GEERVLIET, J. B. F., POSTHUMUS, M. A., VET, L. E. M. & DICKE, M. (1997). Comparative analysis of headspace volatiles from different caterpillar-infested or uninfested food plants of Pieris species. Journal of Chemical Ecology 23, 29352954.
GOLDEN, J. W. & RIDDLE, D. L. (1984). The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature. Developmental Biology 102, 368378.
GRANT, W. N. & VINEY, M. E. (2001). Post-genomic nematode parasitology. International Journal for Parasitology 31, 879888.
GREWAL, P. S., GAUGLER, R. & LEWIS, E. E. (1993). Host recognition behavior by entomopathogenic nematodes during contact with insect gut contents. Journal of Parasitology 79, 495503.
HAN, B. Y. & CHEN, Z. M. (2002). Composition of the volatiles from intact and mechanically pierced tea aphid-tea shoot complexes and their attraction to natural enemies of the tea aphid. Journal of Agricultural and Food Chemistry 50, 25712575.
HEBETS, E. A. & CHAPMAN, R. F. (2000). Electrophysiological studies of olfaction in the whip spider Phrynus parvulus (Arachnida, Amblypygi). Journal of Insect Physiology 46, 14411448.
KHLIBSUWAN, W., ISHIBASHI, N. & KONDO, E. (1992). Response of Steinernema carpocapsae infective juveniles to the plasma of three insect species. Journal of Nematology 24, 156159.
KRIEGER, J. & BREER, H. (1999). Olfactory reception in invertebrates. Science 286, 720723.
LEWIS, E. E. (2002). Behavioural Ecology. In Entomopathogenic Nematology (ed. Gaugler, R.), pp. 205223. CABI Publishing, Wallingford, Oxon, UK.
LEWIS, E. E., GAUGLER, R. & HARRISON, R. (1992). Entomopathogenic nematode host finding: response to host contact cues by cruise and ambush foragers. Parasitology 105, 309315.
LEWIS, E. E., GLAZER, I. & GAUGLER, R. (1996). Location and behavioral effects of lectin binding on entomopathogenic nematodes with different foraging strategies. Journal of Chemical Ecology 22, 455466.
MEINERS, T., WACKERS, F. & LEWIS, W. J. (2002). The effect of molecular structure on olfactory discrimination by the parasitoid Microplitis croceipes. Chemical Senses 27, 811816.
O'LEARY, S. A., STACK, C. M., CHUBB, M. A. & BURNELL, A. M. (1998). The effect of day of emergence from the insect cadaver on the behaviour and environmental tolerances of infective juveniles of the entomopathogenic nematode Heterorhabditis megidis (Strain UK211). Journal of Parasitology 84, 665672.
PRASAD, B. C. & REED, R. R. (1999). Chemosensation – molecular mechanisms in worms and mammals. Trends in Genetics 15, 150153.
ROBINSON, A. F. (1995). Optimal release rates for attracting Meloidogyne incognita, Rotylenchulus reinformis, and other nematodes to carbon dioxide in sand. Journal of Nematology 27, 4250.
SANT'ANA, J. & DICKENS, J. C. (1998). Comparative electrophysiological studies of olfaction in predaceous bugs, Podisus maculiventris and P. nigrispinus. Journal of Chemical Ecology 24, 965984.
SCHMIDT, J. & ALL, J. N. (1978). Attraction of Neoaplectana carpocapsae (Nematoda: Steinernematidae) to common excretory products of insects. Environmental Entomology 7, 605607.
SCHÖLLER, C., MOLIN, S. & WILKINS, K. (1997). Volatile metabolites from some gram-negative bacteria. Chemosphere 35, 14871495.
SCIACCA, J., FORBES, W. M., ASHTON, F. T., LOMBARDINI, E., GAMBLE, H. R. & SCHAD, G. A. (2002). Response to carbon dioxide by the infective larvae of three species of parasitic nematodes. Parasitology International 51, 5362.
SENGUPTA, P., CHOU, J. H. & BARGMANN, C. I. (1996). odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell 84, 899909.
SHAVER, S. A., VARNAM, C. J., HILLIKER, A. J., SOKOLOWSKI, M. B. (1998). The foraging gene affects adult but not larval olfactory-related behavior in Drosophila melanogaster. Behavioural Brain Research 95, 2329.
SUDHAUS, W. (1993). Die mittels symbiontischer Bakterien entomopathogenen Nematoden Gattungen Heterorhabditis and Steinernema sind keine Schwestertaxa. Verhandlungen der Deutschen Zoologischen Gesellschaft 86, 146.
TROEMEL, E. R., CHOU, J. H., DWYER, N. D., COLBERT, H. A. & BARGMANN, C. I. (1995). Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elgans. Cell 83, 207218.
VAN TOL, R. W. H. M., VAN DER SOMMEN, A. T. C., BOFF, M. I. C., VAN BEZOOIJEN, J., SABELIS, M. W. & SMITS, P. H. (2001). Plants protect their roots by alerting the enemies of grubs. Ecology Letters 4, 292294.
VOSSHALL, L. B., AMREIN, H., MOROZOV, P. S., RZHETSKY, A. & AXEL, R. (1999). A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96, 725736.
WARD, S. (1973). Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants. Proceedings of the National Academy of Sciences, USA 70, 817821.
WHITE, G. F. (1927). A method for obtaining infective larvae from cultures. Science 66, 302303.
WOODRING, J. L. & KAYA, H. K. (1988). Steinernematid and heterorhabditid nematodes: a handbook of biology and techniques. Southern Cooperative Series Bulletin No. 331, Arkansas Agricultural Experiment Station, Fayetteville, Arkansas.
ZECHMAN, J. M. & LABOWS, J. N. J. (1985). Volatiles of Pseudomonas aeruginosa and related species by automated headspace concentration gas chromatography. Canadian Journal of Micobiology 31, 232237.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Parasitology
  • ISSN: 0031-1820
  • EISSN: 1469-8161
  • URL: /core/journals/parasitology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed