Skip to main content
×
Home
    • Aa
    • Aa

The antifungal Aureobasidin A and an analogue are active against the protozoan parasite Toxoplasma gondii but do not inhibit sphingolipid biosynthesis

  • A. Q. I. ALQAISI (a1) (a2), A. J. MBEKEANI (a1), M. BASSAS LLORENS (a1), A. P. ELHAMMER (a3) and P. W. DENNY (a1)...
Abstract
SUMMARY

Toxoplasma gondii is an obligate intracellular protozoan parasite of the phylum Apicomplexa, and toxoplasmosis is an important disease of both humans and economically important animals. With a limited array of drugs available there is a need to identify new therapeutic compounds. Aureobasidin A (AbA) is an antifungal that targets the essential inositol phosphorylceramide (IPC, sphingolipid) synthase in pathogenic fungi. This natural cyclic depsipeptide also inhibits Toxoplasma proliforation, with the protozoan IPC synthase orthologue proposed as the target. The data presented here show that neither AbA nor an analogue (Compound 20), target the protozoan IPC synthase orthologue or total parasite sphingolipid synthesis. However, further analyses confirm that AbA exhibits significant activity against the proliferative tachyzoite form of Toxoplasma, and Compound 20, whilst effective, has reduced efficacy. This difference was more evident on analyses of the direct effect of these compounds against isolated Toxoplasma, indicating that AbA is rapidly microbicidal. Importantly, the possibility of targeting the encysted, bradyzoite, form of the parasite with AbA and Compound 20 was demonstrated, indicating that this class of compounds may provide the basis for the first effective treatment for chronic toxoplasmosis.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The antifungal Aureobasidin A and an analogue are active against the protozoan parasite Toxoplasma gondii but do not inhibit sphingolipid biosynthesis
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      The antifungal Aureobasidin A and an analogue are active against the protozoan parasite Toxoplasma gondii but do not inhibit sphingolipid biosynthesis
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      The antifungal Aureobasidin A and an analogue are active against the protozoan parasite Toxoplasma gondii but do not inhibit sphingolipid biosynthesis
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
*Corresponding author. Department of Biosciences, Biophysical Sciences Institute, Lower Mountjoy, Stockton Road, Durham DH1 3LE, UK. E-mail: p.w.denny@durham.ac.uk
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

P. A. Aeed , C. L. Young , M. M. Nagiec and A. P. Elhammer (2009). Inhibition of inositol phosphorylceramide synthase by the cyclic peptide Aureobasidin A. Antimicrobial Agents and Chemotherapy 53, 496504.

M. Antczak , K. Dzitko and H. Dlugonska (2016). Human toxoplasmosis-Searching for novel chemotherapeutics. Biomedicine and Pharmacotherapy 82, 677684.

N. Azzouz , B. Rauscher , P. Gerold , M. F. Cesbron-Delauw , J. F. Dubremetz and R. T. Schwarz (2002). Evidence for de novo sphingolipid biosynthesis in Toxoplasma gondii . International Journal for Parasitology 32, 677684.

V. Cerantola , I. Guillas , C. Roubaty , C. Vionnet , D. Uldry , J. Knudsen and A. Conzelmann (2009). Aureobasidin A arrests growth of yeast cells through both ceramide intoxication and deprivation of essential inositolphosphorylceramides. Molecular Microbiology 71, 15231537.

I. Coppens (2013). Targeting lipid biosynthesis and salvage in apicomplexan parasites for improved chemotherapies. Nature Reviews Microbiology 11, 823835.

P. W. Denny , H. Shams-Eldin , H. P. Price , D. F. Smith and R. T. Schwarz (2006). The protozoan inositol phosphorylceramide synthase: a novel drug target which defines a new class of sphingolipid synthase. Journal of Biological Chemistry 281, 2820028209.

J. M. Figueiredo , W. B. Dias , L. Mendonca-Previato , J. O. Previato and N. Heise (2005). Characterization of the inositol phosphorylceramide synthase activity from Trypanosoma cruzi . Biochemical Journal 387, 519529.

N. H. Georgopapadakou (2000). Antifungals targeted to sphingolipid synthesis: focus on inositol phosphorylceramide synthase. Expert Opinions on Investigative Drugs 9, 17871796.

P. Gerold and R. T. Schwarz (2001). Biosynthesis of glycosphingolipids de-novo by the human malaria parasite Plasmodium falciparum . Molecular and Biochemical Parasitology 112, 2937.

M. J. Gubbels , C. Li and B. Striepen (2003). High-throughput growth assay for Toxoplasma gondii using yellow fluorescent protein. Antimicrobial Agents and Chemotherapy 47, 309316.

S. A. Heidler and J. A. Radding (1995). The AUR1 gene in Saccharomyces cerevisiae encodes dominant resistance to the antifungal agent Aureobasidin A (LY295337). Antimicrobial Agents and Chemotherapy 39, 27652769.

K. Huitema , J. Van Den Dikkenberg , J. F. Brouwers and J. C. Holthuis (2004). Identification of a family of animal sphingomyelin synthases. EMBO Journal 23, 3344.

K. Ikai , K. Takesako , K. Shiomi , M. Moriguchi , Y. Umeda , J. Yamamoto , I. Kato and H. Naganawa (1991). Structure of Aureobasidin A. Journal of Antibiotics (Tokyo) 44, 925933.

S. K. Kim , A. E. Fouts and J. C. Boothroyd (2007). Toxoplasma gondii dysregulates IFN-gamma-inducible gene expression in human fibroblasts: insights from a genome-wide transcriptional profiling. Journal of Immunology 178, 51545165.

S. A. Lauer , N. Ghori and K. Haldar (1995). Sphingolipid synthesis as a target for chemotherapy against malaria parasites. Proceeds of the National Academy of Sciences USA 92, 91819185.

M. Meissner , D. Schluter and D. Soldati (2002). Role of Toxoplasma gondii myosin A in powering parasite gliding and host cell invasion. Science 298, 837840.

J. G. Mina , J. A. Mosely , H. Z. Ali , H. Shams-Eldin , R. T. Schwarz , P. G. Steel and P. W. Denny (2010). A plate-based assay system for analyses and screening of the Leishmania major inositol phosphorylceramide synthase. International Journal of Biochemistry and Cell Biology 42, 15531561.

J. G. Mina , J. A. Mosely , H. Z. Ali , P. W. Denny and P. G. Steel (2011). Exploring Leishmania major inositol phosphorylceramide synthase (LmjIPCS): insights into the ceramide binding domain. Organic and Biomolecular Chemistry 9, 18231830.

M. M. Nagiec , E. E. Nagiec , J. A. Baltisberger , G. B. Wells , R. L. Lester and R. C. Dickson (1997). Sphingolipid synthesis as a target for antifungal drugs. Complementation of the inositol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene. Journal of Biological Chemistry 272, 98099817.

S. Pratt , N. K. Wansadhipathi-Kannangara , C. R. Bruce , J. G. Mina , H. Shams-Eldin , J. Casas , K. Hanada , R. T. Schwarz , S. Sonda and P. W. Denny (2013). Sphingolipid synthesis and scavenging in the intracellular apicomplexan parasite, Toxoplasma gondii . Molecular and Biochemical Parasitology 187, 4351.

J. D. Romano , S. Sonda , E. Bergbower , M. E. Smith and I. Coppens (2013). Toxoplasma gondii salvages sphingolipids from the host Golgi through the rerouting of selected Rab vesicles to the parasitophorous vacuole. Molecular Biology of the Cell 24, 19741995.

M. L. Salto , L. E. Bertello , M. Vieira , R. Docampo , S. N. Moreno and R. M. de Lederkremer (2003). Formation and remodeling of inositolphosphoceramide during differentiation of Trypanosoma cruzi from trypomastigote to amastigote. Eukaryotic Cell 2, 756768.

K. Simons and E. Ikonen (1997). Functional rafts in cell membranes. Nature 387, 569572.

M. Soete , D. Camus and J. F. Dubremetz (1994). Experimental induction of bradyzoite-specific antigen expression and cyst formation by the RH strain of Toxoplasma gondii in vitro . Experimental Parasitology 78, 361370.

S. Sonda , G. Sala , R. Ghidoni , A. Hemphill and J. Pieters (2005). Inhibitory effect of Aureobasidin A on Toxoplasma gondii . Antimicrobial Agents and Chemotherapy 49, 17941801.

K. Takesako , K. Ikai , F. Haruna , M. Endo , K. Shimanaka , E. Sono , T. Nakamura , I. Kato and H. Yamaguchi (1991). Aureobasidins, new antifungal antibiotics. Taxonomy, fermentation, isolation, and properties. Journal of Antibiotics (Tokyo) 44, 919924.

A. M. Vacaru , J. van den Dikkenberg , P. Ternes and J. C. Holthuis (2013). Ceramide phosphoethanolamine biosynthesis in Drosophila is mediated by a unique ethanolamine phosphotransferase in the Golgi lumen. Journal of Biological Chemistry 288, 1152011530.

J. P. Webster , M. Kaushik , G. C. Bristow and G. A. McConkey (2013). Toxoplasma gondii infection, from predation to schizophrenia: can animal behaviour help us understand human behaviour? Journal of Experimental Biology 216, 99112.

R. Welti , E. Mui , A. Sparks , S. Wernimont , G. Isaac , M. Kirisits , M. Roth , C. W. Roberts , C. Botte , E. Marechal and R. McLeod (2007). Lipidomic analysis of Toxoplasma gondii reveals unusual polar lipids. Biochemistry 46, 1388213890.

P. G. Wuts , L. J. Simons , B. P. Metzger , R. C. Sterling , J. L. Slightom and A. P. Elhammer (2015). Generation of broad-spectrum antifungal drug candidates from the natural product compound Aureobasidin A. ACS Medical Chemistry Letters 6, 645649.

S. A. Young , J. G. Mina , P. W. Denny and T. K. Smith (2012). Sphingolipid and ceramide homeostasis: potential therapeutic targets. Biochemistry Research International 2012, 248135.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Parasitology
  • ISSN: 0031-1820
  • EISSN: 1469-8161
  • URL: /core/journals/parasitology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
PDF
Supplementary Materials

Alqaisi supplementary material
Figure S1

 PDF (57 KB)
57 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 7
Total number of PDF views: 43 *
Loading metrics...

Abstract views

Total abstract views: 139 *
Loading metrics...

* Views captured on Cambridge Core between 10th May 2017 - 23rd May 2017. This data will be updated every 24 hours.