Skip to main content
×
×
Home

Characterization of Trypanosoma congolense serodemes in stocks isolated from cattle introduced onto a ranch in Kilifi, Kenya

  • R. A. Masake (a1), V. M. Nantulya (a1), A. J. Musoke (a1), S. K. Moloo (a1) and K. Nguli (a1)...
Summary

A herd of 20 cattle was introduced on a ranch in Kilifi, Coast Province of Kenya, where they were in contact with Glossina austeni for 6 months. In total, 65 trypanosome isolates were made from these animals. Examination of the isolates revealed that 61 were Trypanosoma congolense and 4 were T. theileri. Out of the 61 T. congolense isolates, 55 were successfully passaged and cloned in mice to provide trypanosome populations for further analyses. The stocks and their clones were inoculated into goats on which teneral G. morsitans centralis were later fed in order to provide metacyclics for use in serodeme analysis. Identification of serodemes was carried out by indirect immunofluorescence and neutralization using antimetacyclic hyperimmune sera prepared in mice against metacyclics of cloned trypanosome populations. So far 4 serodemes have been identified in 8 stocks and 7 clones. Each of the 9 stocks contained a mixture of at least 2 of the 4 serodemes identified. Furthermore, stocks isolated sequentially from individual animals contained the same serodemes despite repeated treatment with a curative dose (6 mg/kg body weight) of Berenil between isolations. From the latter finding, it can be inferred that the 4 serodemes were present on the ranch throughout the study period.

Copyright
References
Hide All
Akol, G. W. O. & Murray, M. (1985). Induction of protective immunity in cattle by tsetse-transmitted cloned isolates of Trypanosoma congolense. Annals of Tropical Medicine and Parasitology 79, 617–27.
Barbet, A. F., Davis, W. C. & McGuire, T. C. (1982). Cross-neutralization of two different trypanosome populations derived from a single organism. Nature, London 300, 453–6.
Crowe, J. S., Barry, J. D., Luckins, A. G., Ross, C. A. & Vickerman, K. (1983). All metacyclic variable antigen types of Trypanosoma congolense identified using monoclonal antibodies. Nature, London 306, 389–91.
Cunningham, M. P., Lumsden, W. H. R. & Webber, W. A. F. (1963). Preservation of viable trypanosomes in lymph tubes at low temperature. Experimental Parasitology 14, 280–4.
Doyle, J. J. (1977). Antigenic variation in salivarian trypanosomes. In Immunity to Blood Parasites of Animals and Man, (ed. Miller, L. H., Pino, J. A. and McKelvey, J. L. Jr), pp. 3163. New York and London: Plenum Press.
Ford, J. (1971). The Role of the Trypanosomes in African Ecology. Oxford: Clarendon Press.
Geigy, R. & Kauffmann, M. (1973). Sleeping sickness survey in the Serengeti area (Tanzania) 1971. Examination of large mammals for trypanosomes. Acta Tropica 30, 1223.
Moloo, S. K. (1981). Effects of maintaining Glossina morsitans morsitans on different hosts upon the vector's subsequent infection rates with pathogenic trypanosomes. Acta Tropica 38, 125–36.
Moloo, S. K. (1982). Cyclical transmission of pathogenic Trypanosoma species by gamma-irradiated sterile male Glossina morsitans morsitans. Parasitology 84, 289–96.
Nantulya, V. M. (1986). Immunological approaches to the control of animal trypanosomiasis. Parasitology Today 2, 168–73.
Nantulya, V. M., Doyle, J. J. & Jenni, L. (1978). Studies on Trypanosoma (Nannomonas) congolense II. Observations on the cyclical transmission of three field isolates by Glossina morsitans morsitans. Acta Tropica 35, 399–44.
Nantulya, V. M., Doyle, J. J. & Jenni, L. (1980). Studies on Trypanosoma (Nannomonas) congolense III. Antigenic variation in three cyclically transmitted stocks. Parasitology 80, 123–31.
Nantulya, V. M., Musoke, A.J., Moloo, S. K. & Ngaira, J. M. (1983). Analysis of the variable antigen composition of Trypanosoma brucei brucei metacyclic trypanosomes using monoclonal antibodies. Acta Tropica 40, 1924.
Nantulya, V. M., Musoke, A. J., Rurangirwa, F. R. & Moloo, S. K. (1984). Resistance of cattle to tsetse-transmitted challenge with Trypanosoma brucei or Trypanosoma congolense after spontaneous recovery from syringe-passaged infections. Infection and Immunity 43, 735–8.
Paling, R. W., Leak, S. G. A., Katende, J., Kamunya, G. & Moloo, S. K. (1986). Epidemiology of animal trypanosomiasis on a cattle ranch in Kilifi, Kenya. Acta Tropica 43.
Van der Ploeg, L. H., Valerio, D., De Lange, T., Bernards, A., Borst, P. & Grosveld, F. G. (1982). An analysis of cosmid clones of nuclear DNA from Trypanosoma brucei shows that the genes for variant surface glycoproteins are clustered in the genome. Nucleic Acids Research 10, 5905–23.
Van Meirvenne, N., Magnus, E. & Vervoort, T. (1977). Comparison of variable antigenic types produced by trypanosome strains of the subgenus Trypanozoon, Annales de la Société belge de Médicine tropicale 57, 409–23.
Wilson, A. J. (1969). Value of indirect fluorescent antibody test as a serological aid to diagnosis of Glossina-transmitted bovine trypanosomiasis. Tropical Animal Health and Production 1, 8995.
World Health Organization (1979). The African Trypanosomiasis. Technical Report Series 635, Geneva, Switzerland.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Parasitology
  • ISSN: 0031-1820
  • EISSN: 1469-8161
  • URL: /core/journals/parasitology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 2 *
Loading metrics...

Abstract views

Total abstract views: 42 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th April 2018. This data will be updated every 24 hours.