Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T12:28:33.862Z Has data issue: false hasContentIssue false

Clonal propagation and the fast generation of karyotype diversity: an in vitro Leishmania model

Published online by Cambridge University Press:  18 September 2006

J.-C. DUJARDIN
Affiliation:
Unit of Molecular Parasitology, Instituut voor Tropische Geneeskunde, 155 Nationalestraat, B-2000 Antwerpen, Belgium
S. DE DONCKER
Affiliation:
Unit of Molecular Parasitology, Instituut voor Tropische Geneeskunde, 155 Nationalestraat, B-2000 Antwerpen, Belgium
D. JACQUET
Affiliation:
Unit of Molecular Parasitology, Instituut voor Tropische Geneeskunde, 155 Nationalestraat, B-2000 Antwerpen, Belgium
A.-L. BAÑULS
Affiliation:
Génétique et Evolution des Maladies Infectieuses, UMR CNRS/IRD 2724, Montpellier, France
M. BALAVOINE
Affiliation:
Génétique et Evolution des Maladies Infectieuses, UMR CNRS/IRD 2724, Montpellier, France
D. VAN BOCKSTAELE
Affiliation:
Department of Medicine, University Hospital of Antwerp, Wilrijkstraat 10, B-2650 Edegem, Belgium
M. TIBAYRENC
Affiliation:
Génétique et Evolution des Maladies Infectieuses, UMR CNRS/IRD 2724, Montpellier, France
J. AREVALO
Affiliation:
Departamento de Bioquimica, Biologia Molecular y Farmacologia, Facultad de Ciencias y Filosofia and Instituto de Medicina Tropical ‘Alexander von Humboldt’, Universidad Peruana Cayetano Heredia, A.P. 5045, Lima 100, Peru
D. LE RAY
Affiliation:
Unit of Molecular Parasitology, Instituut voor Tropische Geneeskunde, 155 Nationalestraat, B-2000 Antwerpen, Belgium

Abstract

In the present work we studied the karyotype stability during long-term in vitro maintenance in 3 cloned strains of Leishmania (Viannia) peruviana, Leishmania (Viannia) braziliensis and a hybrid between both species. Only the L. (V.) peruviana strain showed an unstable karyotype, even after subcloning. Four chromosomes were studied in detail, each of them characterized by homologous chromosomes of different size (heteromorphy). Variations in chromosome patterns during in vitro maintenance were rapid and discrete, involving loss of heteromorphy or appearance of additional chromosome size variants. The resulting pattern was not the same according to experimental conditions (subinoculation rate or incubation temperature), and interestingly, this was associated with differences in growth behaviour of the respective parasites. No change in total ploidy of the cells was observed by flow cytometry. We discuss several mechanisms that might account for this variation of chromosome patterns, but we favour the occurrence of aneuploidy, caused by aberrant chromosome segregation during mitosis. Our results provide insight into the generation of karyotype diversity in natural conditions and highlight the relativity of the clone concept in parasitology.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bañuls, A. L., Guerrini, F., Le Pont, F., Barrera, C., Espinel, I., Guderian, R., Echeverria, R. and Tibayrenc, M. ( 1997). Evidence for hybridization by multilocus enzyme electrophoresis and random amplified polymorphic DNA between Leishmania braziliensis and Leishmania panamensis/guyanensis in Ecuador. Journal of Eukaryotic Microbiology 44, 408411.CrossRefGoogle Scholar
Bañuls, A. L., Dujardin, J. C., Guerrini, F., De Doncker, S., Jacquet, D., Arevalo, J., Noel, S., Le Ray, D. and Tibayrenc, M. ( 2000). Is Leishmania (Viannia) peruviana a distinct species? A MLEE/RAPD evolutionary genetics answer. Journal of Eukaryotic Microbiology 47, 197207.CrossRefGoogle Scholar
Bastien, P., Blaineau, C. and Pagès, M. ( 1992). Leishmania: sex, lies and karyotype. Parasitology Today 8, 174177.CrossRefGoogle Scholar
Ben Abderrazak, S., Guerrini, F., Mathieu-Daude, F., Truc, P., Neubauer, K., Lewicka, K., Barnabe, C. and Tibayrenc, M. ( 1993). Isoenzyme electrophoresis for parasite characterization. Methods in Molecular Biology 21, 361382.CrossRefGoogle Scholar
Beverley, S. M. ( 2003). Protozomics: trypanosomatid parasite genetics comes of age. Nature Reviews Genetics 4, 1119. doi. 10.1038/nrg980CrossRefGoogle Scholar
Britto, C., Ravel, C., Bastien, P., Blaineau, C., Pagès, M., Dedet, J. P. and Wincker, P. ( 1998). Conserved linkage groups associated with large-scale chromosomal rearrangements between Old World and New World Leishmania genomes. Gene 222, 107117.CrossRefGoogle Scholar
Cruz, A. K., Titus, R. and Beverley, S. M. ( 1993). Plasticity in chromosome number and testing of essential genes in Leishmania by targeting. Proceedings of the National Academy of Sciences, USA 90, 15991603.CrossRefGoogle Scholar
Dubessay, P., Ravel, C., Bastien, P., Lignon, M. F., Ullman, B., Pagès, M. and Blaineau, C. ( 2001). Effect of large targeted deletions on the mitotic stability of an extra chromosome mediating drug resistance in Leishmania. Nucleic Acids Research 29, 32313240.CrossRefGoogle Scholar
Dujardin, J. C., Bañuls, A. L., Llanos-Cuentas, A., Alvarez, E., De Doncker, S., Jacquet, D., Le Ray, D., Arevalo, J. and Tibayrenc, M. ( 1995 a). Putative Leishmania hybrids in the Eastern Andean valley of Huanuco, Peru. Acta Tropica 59, 293307.Google Scholar
Dujardin, J. C., De Doncker, S., Victoir, K., Le Ray, D., Hamers, R. and Arevalo, J. ( 1994). Size polymorphism of chromosomes bearing gp63 genes in Leishmania of the braziliensis complex: indication of a rearrangement of the gp63 genes in L. braziliensis and L. peruviana. Annals of Tropical Medicine and Parasitology 88, 445448.CrossRefGoogle Scholar
Dujardin, J. C., Dujardin, J. P., Tibayrenc, M., Timperman, G., De Doncker, S., Jacquet, D., Arevalo, J., Llanos-Cuentas, A., Guerra, H., Bermudez, H., Hamers, R. and Le Ray, D. ( 1995 b). Karyotype plasticity in neotropical Leishmania: an index for measuring genomic distance among L. (V.) peruviana and L. (V.) braziliensis populations. Parasitology 110, 2130.Google Scholar
Dujardin, J. C., Gajendran, N., Arevalo, J., Llanos-Cuentas, A., Guerra, H., Gomez, J., Arroyo, J., De Doncker, S., Jacquet, D., Hamers, R. and Le Ray, D. ( 1993 a). Karyotype polymorphism and conserved characters in the Leishmania (Viannia) braziliensis complex explored with chromosome-derived probes. Annales de la Société belge de MédecineTropicale 73, 101118.Google Scholar
Dujardin, J. C., Gajendran, N., Hamers, R., Mathijsen, G., Urjel, R., Recacoechea, M., Villaroel, G., Bermudez, H., Desjeux, P., De Doncker, S. and Le Ray, D. ( 1987). Leishmaniasis in the Lowlands of Bolivia. VII. Characterization and identification of Bolivian isolates by PFG karyotyping. In Leishmaniasis: the First Centenary (1885–1985). New Strategies for Control ( ed. Hart, D), pp. 137148. NATO ASI series A, Plenum Press, New York.
Dujardin, J. C., Llanos-Cuentas, A., Caceres, A., Arana, M., Dujardin, J. P., Guerrini, F., Gomez, J., Arroyo, J., De Doncker, S., Jacquet, D., Hamers, R., Guerra, H., Le Ray, D. and Arevalo, J. ( 1993 b). Molecular karyotype variation in Leishmania (Viannia) peruviana: indication of geographical populations in Peru distributed along a north-south cline. Annals of Tropical Medicine and Parasitology 87, 335347.Google Scholar
Dujardin, J. C., Victoir, K., De Doncker, S., Guerbouj, S., Arevalo, J. and Le Ray, D. ( 2002). Molecular epidemiology and diagnosis of Leishmania: what have we learnt from genomic structure, dynamics and function. Transactions of the Royal Society of Tropical Medicine and Hygiene 96 (S1), 8186.CrossRefGoogle Scholar
Giannini, S. H., Curry, S., Tesh, R. and Van der Ploeg, L. H. T. ( 1990). Size-conserved chromosomes and stability of molecular karyotype in cloned stocks of Leishmania major. Molecular and Biochemical Parasitology 39, 922.CrossRefGoogle Scholar
Inga, R., De Doncker, S., Gomez, J., Lopez, M., Garcia, R., Le Ray, D., Arevalo, J. and Dujardin, J. C. ( 1998). Relation between variation in copy number of ribosomal RNA encoding genes and size of harbouring chromosomes in Leishmania of subgenus Viannia. Molecular and Biochemical Parasitology 92, 219228.CrossRefGoogle Scholar
Kebede, A., De Doncker, S., Arevalo, J., Le Ray, D. and Dujardin, J. C. ( 1999). Size-polymorphism of mini-exon gene-bearing chromosomes among natural populations of Leishmania, subgenus Viannia. International Journal for Parasitology 29, 549557.CrossRefGoogle Scholar
Kopecka, M. and Gabriel, M. ( 1998). The aberrant positioning of nuclei and the microtubular cytoskeleton in Saccharomyces cerevisiae due to improper actin function. Microbiology 144, 17831797.CrossRefGoogle Scholar
Le Ray, D. ( 1975). Structures antigéniques de Trypanosoma brucei (Protozoa, Kinetoplastida). Analyse immunoélectrophorétique et etude comparative. Annales de la Société belge de MédecineTropicale 55, 158160.Google Scholar
Oka, M., Nakai, M., Endo, T., Lim, C. R., Kimata, Y. and Kohno, K. ( 1998). Loss of Hsp70-Hsp40 chaperone activity causes abnormal nuclear distribution and aberrant microtubule formation in M-phase of Saccharomyces cerevisiae. Journal of Biological Chemistry 273, 2972729737.CrossRefGoogle Scholar
Sambrook, J., Fritsch, E. F. and Maniatis, T. ( 1989). Molecular Cloning: a Laboratory Manual, 2nd Edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, USA.
Segovia, M. and Ortiz, G. ( 1997). LD1 amplifications in Leishmania. Parasitology Today 13, 342348.CrossRefGoogle Scholar
Shaw, J. J. and Lainson, R. ( 1987). Ecology and epidemiology: New World. In The Leishmaniases in Biology and Medicine ( ed. Peters, W. and Killick-Kendrick, R.), vol. I, pp. 291365. Academic Press, London.
Tibayrenc, M. and Ayala, F. J. ( 1999). Evolutionary genetics of Trypanosoma and Leishmania. Microbes and Infection 1, 465472.CrossRefGoogle Scholar
Tobie, E. J., Von brand, T. and Mehlman, B. ( 1950). Cultural and physiological observations on Trypanosoma rhodesiense and Trypanosoma gambiense. Journal of Parasitology 36, 4854.CrossRefGoogle Scholar
Van Den Abbeele, J., Claes, Y., van Bockstaele, D., Le Ray, D. and Coosemans, M. ( 1999). Trypanosoma brucei spp. development in the tsetse fly: characterization of the post-mesocyclic stages in the foregut and proboscis. Parasitology 118, 469478.Google Scholar
Van Meirvenne, N., Janssens, P. G. and Magnus, E. ( 1975). Antigenic variation in syringe passaged populations of Trypanosoma (Trypanosoon) brucei. I. Rationalization of the experimental approach. Annales de la Société belge de MédecineTropicale 5, 123.Google Scholar
Victoir, K. and Dujardin, J. C. ( 2002). How to succeed in parasitic life without sex? Asking Leishmania. Trends in Parasitology 18, 8185.CrossRefGoogle Scholar
Victoir, K., Dujardin, J. C., De Doncker, S., Barker, D. C., Arevalo, J., Hamers, R. and Le Ray, D. ( 1995). Plasticity of gp63 gene organization in Leishmania (Viannia) braziliensis and Leishmania (Viannia) peruviana. Parasitology 111, 265273.CrossRefGoogle Scholar
Villaseca, P., Llanos-Cuentas, A., Perez, E. and Davies, C. R. ( 1993). A comparative field study of the relative importance of Lutzomyia peruensis and Lu. verrucarum as vectors of cutaneous leishmaniasis in the Peruvian Andes. American Journal of Tropical Medicine and Hygiene 49, 260269.Google Scholar
Xiao, Z., McGrew, J. T., Schroeder, A. J. and Fitzgerald-Hayes, M. ( 1993). CSE1 and CSE2, two new genes required for accurate mitotic chromosome segregation in Saccharomyces cerevisiae. Molecular and Cell Biology 13, 46914702.CrossRefGoogle Scholar