Skip to main content Accessibility help

Excystation of Cryptosporidium parvum at temperatures that are reached during solar water disinfection



Species belonging to the genera Cryptosporidium are recognized as waterborne pathogens. Solar water disinfection (SODIS) is a simple method that involves the use of solar radiation to destroy pathogenic microorganisms that cause waterborne diseases. A notable increase in water temperature and the existence of a large number of empty or partially excysted (i.e. unviable) oocysts have been observed in previous SODIS studies with water experimentally contaminated with Cryptosporidium parvum oocysts under field conditions. The aim of the present study was to evaluate the effect of the temperatures that can be reached during exposure of water samples to natural sunlight (37–50°C), on the excystation of C. parvum in the absence of other stimuli. In samples exposed to 40–48°C, a gradual increase in the percentage of excystation was observed as the time of exposure increased and a maximum of 53·81% of excystation was obtained on exposure of the water to a temperature of 46°C for 12 h (versus 8·80% initial isolate). Under such conditions, the oocyst infectivity evaluated in a neonatal murine model decreased statistically with respect to the initial isolate (19·38% versus 100%). The results demonstrate the important effect of the temperature on the excystation of C. parvum and therefore on its viability and infectivity.


Corresponding author

*Corresponding author. Tel: +34 981 563 100. Ext. 14890. Fax: +34 981 593 316. E-mail:


Hide All
Amar, C. F., Dear, P. H. and McLauchlin, J. (2004). Detection and identification by real time PCR/RFLP analyses of Cryptosporidium species from human faeces. Letters in Applied Microbiology 38, 217222.
Belosevic, M., Guy, R. A., Taghi-Kilani, R., Neumann, N. F., Gyürék, L. L., Liyanage, L. R., Millard, P. J. and Finch, G. R. (1997). Nucleic acid stains as indicators of Cryptosporidium parvum oocyst viability. International Journal for Parasitology 27, 787798.
Campbell, A. T., Robertson, L. J. and Smith, H. V. (1992). Viability of Cryptosporidium parvum oocysts: correlation of in vitro excystation with inclusion or exclusion of fluorogenic vital dyes. Applied and Environmental Microbiology 58, 34883493.
Conroy, R. M., Meegan, M. E., Joyce, T., McGuigan, K. and Barnes, J. (1996). Solar disinfection of water reduces diarrhoeal disease: an update. Archives of Disease in Childhood 81, 337338.
D'Antonio, R. G., Winn, R. E., Taylor, J. P., Gustafson, T. L., Current, W. L., Rhodes, M. M., Gary, G. W. Jr. and Zajac, R. A. (1985). A waterborne outbreak of cryptosporidiosis in normal hosts. Annals of Internal Medicine 103, 886888.
Dowd, S. E. and Pillai, S. D. (1997). A rapid viability assay for Cryptosporidium oocysts and Giardia cysts for use in conjunction with indirect fluorescent antibody detection. Canadian Journal of Microbiology 43, 658662.
Fayer, R. (2004). Cryptosporidium: a water-borne zoonotic parasite. Veterinary Parasitology 126, 3756.
Fayer, R. (2007). General biology. In Cryptosporidium and Cryptosporidiosis (ed. Fayer, R. and Xiao, L.), pp. 142. CRC Press, Boca Raton, FL, USA.
Fayer, R., Trout, J. M. and Jenkins, M. C. (1998). Infectivity of Cryptosporidium parvum oocysts stored in water at environmental temperatures. Journal of Parasitology 84, 11651169.
Jenkins, M. B., Anguish, L. J., Bowman, D. D., Walker, M. J. and Ghiorse, W. C. (1997). Assessment of a dye permeability assay for determination of inactivation rates of Cryptosporidium parvum oocysts. Applied and Environmental Microbiology 63, 38443850.
Jenkins, M., Trout, J. M., Higgins, J., Dorsch, M., Veal, D. and Fayer, R. (2003). Comparison of tests for viable and infectious Cryptosporidium parvum oocysts. Parasitology Research 89, 15.
Kilani, R. T. and Sekla, L. (1987). Purification of Cryptosporidium oocysts and sporozoites by cesium chloride and Percoll gradients. American Journal of Tropical Medicine and Hygiene 36, 505508.
King, B. J. and Monis, P. T. (2006). Critical processes affecting Cryptosporidium oocyst survival in the environment. Parasitology 134, 309323.
King, B. J., Keegan, A. R., Monis, P. T. and Saint, C. P. (2005). Environmental temperature controls Cryptosporidium oocyst metabolic rate and associated retention of infectivity. Applied and Environmental Microbiology 71, 38483857.
Lorenzo-Lorenzo, M. J., Ares-Mazás, M. E., Villacorta-Martínez de Maturana, I. and Durán-Oreiro, D. (1993). Effect of ultraviolet disinfection of drinking water on the viability of Cryptosporidium parvum oocysts. Journal of Parasitology 79, 6770.
McGuigan, K. G., Joyce, T. M., Conroy, R. M., Gillespie, J. B. and Elmore-Meegan, M. (1998). Solar disinfection of drinking water contained in transparent plastic bottles: characterizing the bacterial inactivation process. Journal of Applied Microbiology 84, 11381148.
McGuigan, K. G., Joyce, T. M. and Conroy, R. M. (1999). Solar disinfection: use of sunlight to decontaminate drinking water in developing countries. Journal of Medical Microbiology 48, 785787.
McGuigan, K. G., Méndez-Hermida, F., Castro-Hermida, J. A., Ares-Mazás, E., Kehoe, S. C., Boyle, M., Sichel, C., Fernández-Ibáñez, P., Meyer, B. P., Ramalingham, S. and Meyer, E. A. (2006). Batch solar disinfection inactivates oocysts of Cryptosporidium parvum and cysts of Giardia muris in drinking water. Journal of Applied Microbiology 101, 453463.
Méndez-Hermida, F., Castro-Hermida, J. A., Ares-Mazás, E., Kehoe, S. C. and McGuigan, K. G. (2005). Effect of batch-process solar disinfection on survival of Cryptosporidium parvum oocysts in drinking water. Applied and Environmental Microbiology 71, 16531654.
Neumann, N. F., Gyürek, L. L., Gammie, L., Finch, G. R. and Belosevic, M. (2000). Comparison of animal infectivity and nucleic acid staining for assessment of Cryptosporidium parvum viability in water. Applied and Environmental Microbiology 66, 406412.
Nichols, G. (2007). Epidemiology. In Cryptosporidium and Cryptosporidiosis (ed. Fayer, R. and Xiao, L.), pp. 79118. CRC Press, Boca Raton, FL, USA.
Peeters, J. E., Mazás, E. A., Masschelein, W. J., Villacorta Martínez de Maturana, I. and Debacker, E. (1989). Effect of disinfection of drinking water with ozone or chlorine dioxide on survival of Cryptosporidium parvum oocysts. Applied and Environmental Microbiology 55, 15191522.
Robertson, L. J. and Gjerde, B. K. (2007). Cryptosporidium oocysts: challenging adversaries? Trends in Parasitology 23, 344347.
Robertson, L. J., Campbell, A. T. and Smith, H. V. (1993). In vitro excystation of Cryptosporidium parvum. Parasitology 106, 1319.
Rochelle, P. A., Upton, S. J., Montelone, B. A. and Woods, K. (2005). The response of Cryptosporidium parvum to UV light. Trends in Parasitology 21, 8187.
Smith, H. V., Nichols, R. A. and Grimason, A. M. (2005). Cryptosporidium excystation and invasion: getting to the guts of the matter. Trends in Parasitology 21, 133142.
Sommer, B., Mariño, A., Solarte, Y., Salas, M. L., Dierolf, C., Valiente, C., Mora, D., Rechsteiner, R., Setter, P., Wirojanagud, W., Ajarmeh, H., Al-Hassan, A. and Wegelin, M. (1997). SODIS – an emerging water treatment process. Journal of Water Supply: Research and Technology-Aqua 46, 127137.
Vetterling, J. M. and Doran, D. J. (1969). Storagen polysaccharide in coccidial sporozoites after excystation and penetration of cells. Journal of Protozoology 16, 772775.
Widmer, G., Klein, P. and Bonilla, R. (2007). Adaptation of Cryptosporidium oocysts to different excystation conditions. Parasitology 134, 15831588.


Related content

Powered by UNSILO

Excystation of Cryptosporidium parvum at temperatures that are reached during solar water disinfection



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.