Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T20:20:40.525Z Has data issue: false hasContentIssue false

In vivo efficacy of PF1022A and nicotinic acetylcholine receptor agonists alone and in combination against Nippostrongylus brasiliensis

Published online by Cambridge University Press:  07 June 2013

DANIEL KULKE*
Affiliation:
Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany Global Drug Discovery – Animal Health – Parasiticides, Bayer HealthCare, Leverkusen, Germany
JÜRGEN KRÜCKEN
Affiliation:
Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
ACHIM HARDER
Affiliation:
Department for Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
RALPH KREBBER
Affiliation:
Research and Development – Development – Human Safety – Residue Analysis, Bayer CropScience AG, Monheim am Rhein, Germany
KRISTINE FRAATZ
Affiliation:
Global Drug Discovery – Animal Health – Department for Pharmacokinetics and Safety, Bayer HealthCare, Leverkusen, Germany
HEINZ MEHLHORN
Affiliation:
Institute for Zoomorphology, Cytology and Parasitology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
GEORG VON SAMSON-HIMMELSTJERNA
Affiliation:
Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
*
*Corresponding author. Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany. E-mail: daniel.kulke@fu-berlin.de

Summary

The cyclooctadepsipeptide PF1022A and the aminophenylamidines amidantel, deacylated amidantel (dAMD) and tribendimidine were tested as examples for drug classes potentially interesting for development as anthelmintics against human helminthiases. These compounds and levamisole were tested alone and in combination to determine their efficacy against the rat hookworm Nippostrongylus brasiliensis. After three oral treatments, intestinal worms were counted. Drug effects on parasite morphology were studied using scanning electron microscopy (SEM). Plasma pharmacokinetics were determined for tribendimidine and dAMD. All drugs reduced worm burden in a dose-dependent manner, however amidantel was significantly less active than the other aminophenylamidines. Combinations of tribendimidine and dAMD with levamisole or PF1022A at suboptimal doses revealed additive effects. While PF1022A caused virtually no changes in morphology, levamisole, dAMD and tribendimidine caused severe contraction, particularly in the hind body region. Worms exposed to combinations of PF1022A and aminophenylamidines were indistinguishable from worms exposed only to aminophenylamidines. After oral treatment with tribendimidine, only the active metabolite dAMD was detectable in plasma and concentrations were not significantly different for oral treatment with dAMD. The results support further evaluation of cyclooctadepsipeptides alone and in combination with cholinergic drugs to improve efficacy. Combining these with registered drugs may help to prevent development of resistance.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beach, M. J., Streit, T. G., Addiss, D. G., Prospere, R., Roberts, J. M. and Lammie, P. J. (1999). Assessment of combined ivermectin and albendazole for treatment of intestinal helminth and Wuchereria bancrofti infections in Haitian schoolchildren. American Journal of Tropical Medicine and Hygiene 60, 479486.CrossRefGoogle ScholarPubMed
Epe, C. and Kaminsky, R. (2013). New advancement in anthelmintic drugs in veterinary medicine. Trends in Parasitology 29, 129134.CrossRefGoogle ScholarPubMed
Geary, T. G., Hosking, B. C., Skuce, P. J., von Samson-Himmelstjerna, G., Maeder, S., Holdsworth, P., Pomroy, W. and Vercruysse, J. (2012). World association for the advancement of veterinary parasitology (W.A.A.V.P.) guideline: anthelmintic combination products targeting nematode infections of ruminants and horses. Veterinary Parasitology 190, 306316.CrossRefGoogle Scholar
Guest, M., Bull, K., Walker, R. J., Amliwala, K., O'Connor, V., Harder, A., Holden-Dye, L. and Hopper, N. A. (2007). The calcium-activated potassium channel, SLO-1, is required for the action of the novel cyclo-octadepsipeptide anthelmintic, emodepside, in Caenorhabditis elegans. International Journal of Parasitology 37, 15771588.CrossRefGoogle ScholarPubMed
Harder, A. and von Samson-Himmelstjerna, G. (2002). Cyclooctadepsipeptides – a new class of anthelmintically active compounds. Parasitology Research 88, 481488.CrossRefGoogle ScholarPubMed
Hotez, P. (2011). Enlarging the ‘Audacious Goal’: elimination of the world's high prevalence neglected tropical diseases. Vaccine 29(Suppl 4), D104D110.CrossRefGoogle ScholarPubMed
Hotez, P. J., Bethony, J. M., Diemert, D. J., Pearson, M. and Loukas, A. (2010). Developing vaccines to combat hookworm infection and intestinal schistosomiasis. Nature Reviews. Microbiology 8, 814826.CrossRefGoogle ScholarPubMed
Hu, Y., Xiao, S. H. and Aroian, R. V. (2009). The new anthelmintic tribendimidine is an L-type (levamisole and pyrantel) nicotinic acetylcholine receptor agonist. PLoS Neglected Tropical Diseases 3, e499.CrossRefGoogle ScholarPubMed
Knopp, S., Mohammed, K. A., Speich, B., Hattendorf, J., Khamis, I. S., Khamis, A. N., Stothard, J. R., Rollinson, D., Marti, H. and Utzinger, J. (2010). Albendazole and mebendazole administered alone or in combination with ivermectin against Trichuris trichiura: a randomized controlled trial. Clinical Infectious Diseases 51, 14201428.CrossRefGoogle ScholarPubMed
Kotze, A. C., Lowe, A., O'Grady, J., Kopp, S. R. and Behnke, J. M. (2009). Dose–response assay templates for in vitro assessment of resistance to benzimidazole and nicotinic acetylcholine receptor agonist drugs in human hookworms. American Journal of Tropical Medicine and Hygiene 81, 163170.CrossRefGoogle ScholarPubMed
Krücken, J., Harder, A., Jeschke, P., Holden-Dye, L., O'Connor, V., Welz, C. and von Samson-Himmelstjerna, G. (2012). Anthelmintic cyclcooctadepsipeptides: complex in structure and mode of action. Trends in Parasitology 28, 385394.CrossRefGoogle ScholarPubMed
Kulke, D., Krücken, J., Welz, C., von Samson-Himmelstjerna, G. and Harder, A. (2012). In vivo efficacy of the anthelmintic tribendimidine against the cestode Hymenolepis microstoma in a controlled laboratory trial. Acta Tropica 123, 7884.CrossRefGoogle Scholar
Kulke, D., Krücken, J., Demeler, J., Harder, A., Mehlhorn, H. and von Samson-Himmelstjerna, G. (2013). In vitro efficacy of cyclooctadepsipeptides and aminophenylamidines alone and in combination against third-stage larvae and adult worms of Nippostrongylus brasiliensis and first-stage larvae of Trichinella spiralis. Parasitology Research 112, 335345.CrossRefGoogle ScholarPubMed
Leathwick, D. M., Hosking, B. C., Bisset, S. A. and McKay, C. H. (2009). Managing anthelmintic resistance: is it feasible in New Zealand to delay the emergence of resistance to a new anthelmintic class? New Zealand Veterinary Journal 57, 181192.CrossRefGoogle ScholarPubMed
Martin, R. J., Robertson, A. P., Buxton, S. K., Beech, R. N., Charvet, C. L. and Neveu, C. (2012). Levamisole receptors: a second awakening. Trends in Parasitology 28, 289296.CrossRefGoogle ScholarPubMed
Olliaro, P., Seiler, J., Kuesel, A., Horton, J., Clark, J. N., Don, R. and Keiser, J. (2011). Potential drug development candidates for human soil-transmitted helminthiases. PLoS Neglected Tropical Diseases 5, e1138.CrossRefGoogle ScholarPubMed
Prichard, R. K., Basanez, M. G., Boatin, B. A., McCarthy, J. S., Garcia, H. H., Yang, G. J., Sripa, B. and Lustigman, S. (2012). A research agenda for helminth diseases of humans: intervention for control and elimination. PLoS Neglected Tropical Diseases 6, e1549.CrossRefGoogle ScholarPubMed
Speich, B., Ame, S. M., Ali, S. M., Alles, R., Hattendorf, J., Utzinger, J., Albonico, M. and Keiser, J. (2012). Efficacy and safety of nitazoxanide, albendazole, and nitazoxanide-albendazole against Trichuris trichiura infection: a randomized controlled trial. PLoS Neglected Tropical Diseases 6, e1685.CrossRefGoogle ScholarPubMed
Tomlinson, G., Albuquerque, C. A. and Woods, R. A. (1985). The effects of amidantel (BAY d 8815) and its deacylated derivative (BAY d 9216) on Caenorhabditis elegans. European Journal of Pharmacology 113, 255262.CrossRefGoogle ScholarPubMed
Tritten, L., Nwosu, U., Vargas, M. and Keiser, J. (2012). In vitro and in vivo efficacy of tribendimidine and its metabolites alone and in combination against the hookworms Heligmosomoides bakeri and Ancylostoma ceylanicum. Acta Tropica 122, 101107.CrossRefGoogle ScholarPubMed
von Samson-Himmelstjerna, G., Harder, A., Sangster, N. C. and Coles, G. C. (2005). Efficacy of two cyclooctadepsipeptides, PF1022A and emodepside, against anthelmintic-resistant nematodes in sheep and cattle. Parasitology 130, 343347.CrossRefGoogle ScholarPubMed
Wang, M., Watanabe, N., Shomura, T. and Ohtomo, H. (1995). Effects of PF1022A on Nippostrongylus brasiliensis in rats and Hymenolepis nana in mice. Japanese Journal of Parasitology 44, 306310.Google Scholar
Welz, C., Krüger, N., Schniederjans, M., Miltsch, S. M., Krücken, J., Guest, M., Holden-Dye, L., Harder, A. and von Samson-Himmelstjerna, G. (2011). SLO-1-channels of parasitic nematodes reconstitute locomotor behaviour and emodepside sensitivity in Caenorhabditis elegans slo-1 loss of function mutants. PLoS Pathogens 7, e1001330.CrossRefGoogle ScholarPubMed
Wollweber, H., Niemers, E., Flucke, W., Andrews, P., Schulz, H. P. and Thomas, H. (1979). Amidantel, a potent anthelminthic from a new chemical class. Arzneimittelforschung 29, 3132.Google ScholarPubMed
World Health Organization (2011). WHO Model List of Essential Medicines: 17th List. World Health Organization, Geneva.Google Scholar
Xiao, S. H., Hui-Ming, W., Tanner, M., Utzinger, J. and Chong, W. (2005). Tribendimidine: a promising, safe and broad-spectrum anthelmintic agent from China. Acta Tropica 94, 114.CrossRefGoogle ScholarPubMed
Xue, J., Xiao, S. H., Xu, L. L. and Qiang, H. Q. (2010). The effect of tribendimidine and its metabolites against Necator americanus in golden hamsters and Nippostrongylus braziliensis in rats. Parasitology Research 106, 775781.CrossRefGoogle ScholarPubMed
Yuan, G., Xu, J., Qu, T., Wang, B., Zhang, R., Wei, C. and Guo, R. (2010). Metabolism and disposition of tribendimidine and its metabolites in healthy Chinese volunteers. Drugs in Research and Development 10, 8390.Google ScholarPubMed
Ziegelbauer, K., Speich, B., Mausezahl, D., Bos, R., Keiser, J. and Utzinger, J. (2012). Effect of sanitation on soil-transmitted helminth infection: systematic review and meta-analysis. PLoS Medicine 9, e1001162.CrossRefGoogle ScholarPubMed