Skip to main content Accessibility help

The influence of clonal diversity and intensity-dependence on trematode infections in an amphipod

  • D. B. KEENEY (a1) (a2), K. BRYAN-WALKER (a1), N. KHAN (a1), T. M. KING (a1) and R. POULIN (a1)...

Individual animals are often infected not only by different parasite species, but also by multiple genotypes of the same parasite species. Genetic relatedness among parasites sharing a host is expected to modulate their strategies of resource exploitation, growth and virulence. We experimentally examined the effects that genetic diversity and infection intensity had on host mortality, infectivity and growth of the marine trematode Maritrema novaezealandensis in amphipod hosts. The presence of 2 versus 1 parasite genotype during infection did not influence subsequent host mortality, had different effects on infectivity among genotypes and did not influence growth or variation in parasite growth. Density-dependent growth reductions revealed that the number of parasites infecting a host was more important than their genetic relatedness. Temperature, host size, and host sex influenced the degree to which density-dependent factors affected parasite growth. Our results suggest that the effects of parasite relatedness vary among parasite genotypes in this trematode species, and reveal that many factors play an important role during parasite development and transmission.

Corresponding author
*Corresponding author: Department of Zoology, University of Otago, P.O. Box 56, Dunedin9054, New Zealand. Tel: +64 3 479 7983. Fax: +64 3 479 7584. E-mail:
Hide All
Brown, S. P. (1999). Cooperation and conflict in host-manipulating parasites. Proceedings of the Royal Society of London, B 266, 18991904.
Brown, S. P., Hochberg, M. E. and Grenfell, B. T. (2002). Does multiple infection select for raised virulence? Trends in Microbiology 10, 401405.
Brown, S. P., de Lorgeril, J., Joly, C. and Thomas, F. (2003). Field evidence for density-dependent effects in the trematode Microphallus papillorobustus in its manipulated host, Gammarus insensibilis. Journal of Parasitology 89, 668672.
Burnham, K. P. and Anderson, D. R. (2002). Model Selection and Multimodal Inference: A Practical Information-Theoretic Approach, 2nd Edn.Springer-Verlag, Berlin, Germany.
Bush, A. O., Fernández, J. C., Esch, G. W. and Seed, J. R. (2001). Parasitism: The Diversity and Ecology of Animal Parasites. Cambridge University Press, Cambridge, UK.
Chao, L., Hanley, K. A., Burch, C. L., Dahlberg, C. and Turner, P. E. (2000). Kin selection and parasite evolution: higher and lower virulence with hard and soft selection. Quarterly Review of Biology 75, 261275.
Chubb, J. C. (1979). Seasonal occurrence of helminthes in freshwater fishes. Part II Trematoda. Advances in Parasitology 17, 141313.
Davies, C. M., Fairbrother, E. and Webster, J. P. (2002). Mixed strain schistosome infections of snails and the evolution of parasite virulence. Parasitology 124, 3138.
Dugatkin, L. A. (1997). Cooperation Among Animals: An Evolutionary Perspective. Oxford University Press, Oxford, UK.
Frank, S. A. (1992). A kin selection model for the evolution of virulence. Proceedings of the Royal Society of London, B 250, 195197.
Frank, S. A. (1996). Models of parasite virulence. Quarterly Review of Biology 71, 3778.
Fredensborg, B. L. and Poulin, R. (2005). Larval helminths in intermediate hosts: does competition early in life determine the fitness of adult parasites? International Journal for Parasitology 35, 10611070.
Fredensborg, B. L., Mouritsen, K. N. and Poulin, R. (2004). Intensity-dependent mortality of Paracalliope novizealandiae (Amphipoda: Crustacea) infected by a trematode: experimental infections and field observations. Journal of Experimental Marine Biology and Ecology 311, 253265.
Gower, C. M. and Webster, J. P. (2005). Intraspecific competition and the evolution of virulence in a parasitic trematode. Evolution 59, 544553.
Griffin, A. S. and West, S. A. (2002). Kin selection: fact and fiction. Trends in Ecology and Evolution 17, 1521.
Hamilton, W. D. (1964). The genetical evolution of social behaviour. Journal of Theoretical Biology 7, 152.
Hughes, A. R., Inouye, B. D., Johnson, M. T. J., Underwood, N. and Vellend, M. (2008). Ecological consequences of genetic diversity. Ecology Letters 11, 609623.
Jager, I. and Schjorring, S. (2006). Multiple infections: relatedness and time between infections affect the establishment and growth of the cestode Schistocephalus solidus in its stickleback host. Evolution 60, 616622.
Keymer, A. (1982). Density-dependent mechanisms in the regulation of intestinal helminth populations. Parasitology 84, 573587.
Keeney, D. B., Waters, J. M. and Poulin, R. (2006). Microsatellite loci for the New Zealand trematode Maritrema novaezealandensis. Molecular Ecology Notes 6, 10421044.
Keeney, D. B., Waters, J. M. and Poulin, R. (2007 a). Clonal diversity of the marine trematode Maritrema novaezealandensis within intermediate hosts: the molecular ecology of parasite life cycles. Molecular Ecology 16, 431439.
Keeney, D. B., Waters, J. M. and Poulin, R. (2007 b). Diversity of trematode genetic clones within amphipods and the timing of same-clone infections. International Journal for Parasitology 37, 351357.
Margolis, L., Esch, G. W., Holmes, J. C., Kuris, A. M. and Schad, G. A. (1982). The use of ecological terms in parasitology. Journal of Parasitology 68, 131133.
Martorelli, S. R., Fredensborg, B. L., Mouritsen, K. N. and Poulin, R. (2004). Description and proposed life cycle of Maritrema novaezealandensis n. sp. (Microphallidae) parasitic in red-billed gulls, Larus novaehollandiae scopulinus, from Otago Harbor, South Island, New Zealand. Journal of Parasitology 90, 272277.
Parker, G. A., Chubb, J. C., Roberts, G. N., Michaud, M. and Milinski, M. (2003). Optimal growth strategies of larval helminths in their intermediate hosts. Journal of Evolutionary Biology 16, 4754.
Poulin, R. (1996 a). The evolution of life history strategies in parasitic animals. Advances in Parasitology 37, 107134.
Poulin, R. (1996 b). Sexual inequalities in helminth infections: a cost of being a male? American Naturalist 147, 287295.
Poulin, R. (1996 c). Helminth growth in vertebrate hosts: does host sex matter? International Journal for Parasitology 26, 13111315.
Poulin, R. (2007). Evolutionary Ecology of Parasites, 2nd Edn.Princeton University Press, Princeton, NJ, USA.
Poulin, R. and Latham, A. D. M. (2003). Effects of initial (larval) size and host body temperature on growth in trematodes. Canadian Journal of Zoology 81, 574581.
Rauch, G., Kalbe, M. and Reusch, T. B. H. (2008). Partitioning average competition and extreme-genotype effects in genetically diverse infections. Oikos 117, 399405.
Read, A. F. and Taylor, L. H. (2001). The ecology of genetically diverse infections. Science 292, 10991102.
Sandland, G. J. and Goater, C. P. (2000). Development and intensity dependence of Ornithodiplostomum ptychocheilus metacercariae in fathead minnows (Pimephales promelas). Journal of Parasitology 86, 10561060.
Schalk, G. and Forbes, M. R. (1997). Male biases in parasitism of mammals: effects of study type, host age, and parasite taxon. Oikos 78, 6774.
Sheridan, L. A. D., Poulin, R., Ward, D. F. and Zuk, M. (2000). Sex differences in parasitic infections among arthropod hosts: is there a male bias? Oikos 88, 327334.
Shostak, A. W. and Scott, M. E. (1993). Detection of density-dependent growth and fecundity of helminths in natural infections. Parasitology 106, 527539.
Vizoso, D. B. and Ebert, D. (2005). Mixed inoculations of a microsporidian parasite with horizontal and vertical infections. Oecologia 143, 157166.
Wedekind, C. and Ruetschi, A. (2000). Parasite heterogeneity affects infection success and the occurrence of within-host competition: an experimental study with a cestode. Evolutionary Ecology Research 2, 10311043.
Zuk, M. and McKean, K. A. (1996). Sex differences in parasite infections: patterns and processes. International Journal for Parasitology 26, 10091024.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0031-1820
  • EISSN: 1469-8161
  • URL: /core/journals/parasitology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed