Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T08:05:45.249Z Has data issue: false hasContentIssue false

Parasites of the Brazilian flathead Percophis brasiliensis reflect West Atlantic biogeographic regions

Published online by Cambridge University Press:  03 November 2016

PAOLA E. BRAICOVICH*
Affiliation:
Laboratorio de Ictioparasitología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3350, (7600) Mar del Plata, Argentina
CAMILA PANTOJA
Affiliation:
Curso de Pós-Graduação em Ciências Veterinárias. Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro, Caixa Postal 74·540, 23851-970, Seropédica, RJ, Brasil
ALDENICE N. PEREIRA
Affiliation:
Curso de Pós-Graduação em Ciências Veterinárias. Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro, Caixa Postal 74·540, 23851-970, Seropédica, RJ, Brasil
JOSE L. LUQUE
Affiliation:
Curso de Pós-Graduação em Ciências Veterinárias. Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro, Caixa Postal 74·540, 23851-970, Seropédica, RJ, Brasil
JUAN T. TIMI
Affiliation:
Laboratorio de Ictioparasitología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3350, (7600) Mar del Plata, Argentina
*
*Corresponding author: Laboratorio de Ictioparasitología, Instituto de Investigaciones Marinas y Costeras (II MyC), FCEyN, Universidad Nacional de Mar del Plata-CONICET, Funes 3350, (7600) Mar del Plata, Argentina. E-mail: braicovi@mdp.edu.ar

Summary

With the aim of evaluating the utility of marine parasites as indicators of zoogeographical regions in the South West Atlantic, we analyzed data on assemblages of long-lived larval parasites of 488 specimens of Percophis brasiliensis distributed in 11 samples from nine localities covering the entire distribution of the species in the Argentine biogeographical Province. Near half a million long-lived parasite individuals belonging to 17 species present in the whole sample displayed clear latitudinal patterns. Data for parasite assemblages at infracommunity and component community levels were analysed in relation to the geographical distance. Significant similarity decay of parasite assemblages over distance was observed, with those based on abundances and mean abundances showing departures from predicted values of regressions. These departures were represented by higher dissimilarities between samples coming from different zoogeographical regions than between those caught within the same region, independently of the distance separating them. Consequently, zoogeographical regions were identified in a distance-decay context. Multivariate analyses corroborated a close fit of similarity between assemblages to existing zoogeographical classifications. Regressions representing distance decay of similarity, and the identification of their outliers, can therefore shed light on the existence of discontinuities or uniformities in the geographic distribution of parasite assemblages and, in turn, in the zoogeography of their fish hosts.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alarcos, A. J., Pereira, A. N., Taboarda, N. L., Luque, J. L. and Timi, J. T. (2016). Parasitological evidence of stocks of Paralichthys isosceles (Pleuronectiformes: Paralichthyidae) at small and large geographical scales in South American Atlantic coasts. Fisheries Research 173, 221228.CrossRefGoogle Scholar
Anderson, M. J., Gorley, R. N. and Clarke, K. R. (2008). PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymouth.Google Scholar
Avigliano, E., Saez, M. B., Rico, R. and Volpedo, A. V. (2015). Use of otolith strontium: calcium and zinc: calcium ratios as an indicator of the habitat of Percophis brasiliensis Quoy & Gaimard, 1825 in the south western Atlantic Ocean. Neotropical Ichthyology 13, 187194.Google Scholar
Beveridge, I. and Campbell, R. A. (2010). Validation of Christianella Guiart, 1931 (Cestoda: Trypanorhyncha) and its taxonomic relationship with Grillotia Guiart, 1927. Systematic Parasitology 76, 111129.CrossRefGoogle ScholarPubMed
Braicovich, P. E. and Timi, J. T. (2008). Parasites as biological tags for stock discrimination of the Brazilian flathead, Percophis brasiliensis in the south-west Atlantic. Journal of Fish Biology 73, 557571.Google Scholar
Braicovich, P. E. and Timi, J. T. (2010). Seasonal stability in parasite assemblages of the Brazilian flathead, Percophis brasiliensis (Perciformes: Percophidae): predictable tools for stock identification. Folia Parasitologica 57, 206212.CrossRefGoogle ScholarPubMed
Braicovich, P. E., Luque, J. L. and Timi, J. T. (2012). Geographical patterns of parasite infracommunities in the rough scad, Trachurus lathami Nichols, in the southwestern Atlantic ocean. Journal of Parasitology 98, 768777.Google Scholar
Briggs, J. C. and Bowen, B. W. (2012). A realignment of marine biogeographic provinces with particular reference to fish distributions. Journal of Biogeography 39, 1230.CrossRefGoogle Scholar
Brooks, D. R. and Hoberg, E. P. (2000). Triage for the biosphere: the need and rationale for taxonomic inventories and phylogenetic studies of parasites. Comparative Parasitology 67, 125.Google Scholar
Bush, A. O., Lafferty, K. D., Lotz, J. M. and Shostak, A. W. (1997). Parasitology meets ecology on its own terms: Margolis et al. Revisited. Journal of Parasitology 83, 575583.Google Scholar
Cantatore, D. M. P. and Timi, J. T. (2015). Marine parasites as biological tags in South American Atlantic waters, current status and perspectives. Parasitology 142, 524.CrossRefGoogle Scholar
Clarke, K. R. and Gorley, R. N. (2006). PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth.Google Scholar
Cousseau, M. B. and Perrotta, R. G. (2004). Peces marinos de Argentina. Biología, distribución, pesca. Publicaciones especiales INIDEP, Mar del Plata, Argentina.Google Scholar
Esch, G. W. and Fernández, J. C. (1993). A Functional Biology of Parasitism, 1st Edn. Chapman & Hall, London, UK.Google Scholar
Fellis, K. J. and Esch, G. W. (2005). Variation in life cycle affects the distance decay of similarity among bluegill sunfish parasite communities. Journal of Parasitology 91, 14841486.Google Scholar
Goslee, S. C. and Urban, D. L. (2007). The ecodist package for dissimilarity-based analysis of ecological data. Journal of Statistical Software 22, 119.CrossRefGoogle Scholar
MacKenzie, K. and Abaunza, P. (2013). Parasites as biological tags. In Stock Identification Methods, 2nd edition (ed. Cadrin, S., Kerr, L. and Mariani, S.), pp. 185204. Elsevier, San Diego, USA.Google Scholar
Magurran, A. E. (1988). Ecological Diversity and its Measurement. Princeton University Press, Princeton, New Jersey.Google Scholar
Mattiucci, S. and Nascetti, G. (2008). Advances and trends in the molecular systematic of anisakid nematodes, with implications for their evolutionary ecology and host-parasite co-evolutionary processes. Advances in Parasitology 66, 47148.CrossRefGoogle ScholarPubMed
Menni, R. C., Jaureguizar, A. J., Stehmann, M. F. W. and Lucifora, L. O. (2010). Marine biodiversity at the community level: zoogeography of sharks, skates, rays and chimaeras in the southwestern Atlantic. Biodiversity and Conservation 19, 775796.Google Scholar
Milessi, A. C. and Marí, N. R. (2012). Ecología trófica del pez palo, Percophis brasiliensis (Quoy y Gaimard, 1825) en el ecosistema costero Argentino-Uruguayo (34° S- 41°S). Revista de Investigación y Desarrollo Pesquero 21, 6172.Google Scholar
Miloslavich, P., Klein, E., Díaz, J. M., Hernandez, C. E., Bigatti, G., Campos, L., Artigas, F., Castillo, J., Penchaszadeh, P., Neill, P., Carranza, A., Retana, M., Díaz de Astarloa, J. M., Lewis, M., Yorio, P., Piriz, M., Rodriguez, G., Yoneshigue-Valentin, Y., Gamboa, L. and Martín, A. (2011). Marine biodiversity in the Atlantic and Pacific coasts of South America: knowledge and gaps. PLoS ONE 6, e14631.Google Scholar
Oliva, M. E. and González, M. T. (2005). The decay of similarity over geographical distance in parasite communities of marine fishes. Journal of Biogeography 32, 13271332.Google Scholar
Pereira, A. N., Pantoja, C., Luque, J. L. and Timi, J. T. (2014). Parasites of Urophycis brasiliensis (Gadiformes: Phycidae) as indicators of marine ecoregions in coastal areas of the South American Atlantic with the assessment of their stocks. Parasitology Research 113, 42814292.CrossRefGoogle Scholar
Pérez-del-Olmo, A., Fernández, M., Raga, J. A., Kostadinova, A. and Morand, S. (2009). Not everything is everywhere: the distance decay of similarity in a marine host–parasite system. Journal of Biogeography 36, 200209.Google Scholar
Poulin, R. (2003). The decay of similarity with geographical distance in parasite communities of vertebrate hosts. Journal of Biogeography 30, 16091615.Google Scholar
Poulin, R. and Dick, T. A. (2007). Spatial variation in population density across the geographical range in helminth parasites of yellow perch Perca flavescens . Ecography 30, 629636.Google Scholar
Poulin, R. and Kamiya, T. (2015). Parasites as biological tags of fish stocks: a meta-analysis of their discriminatory power. Parasitology, 142, 145155.Google Scholar
Rohde, K. (2002). Ecology and biogeography of marine parasites. Advances in Marine Biology 43, 186.Google Scholar
Sardella, N. H., Mattiucci, S., Timi, J. T., Bastida, R., Rodríguez, D. and Nascetti, G. (2005). Corynosoma australe Johnston, 1937 and C. cetaceum Johnston & Best, 1942 (Acanthocephala: Polymorphidae) from marine mammals and fish in Argentinean waters: genetic differentiation and taxonomic status. Systematic Parasitology 61, 143156.Google Scholar
Seifertová, M., Vyskočilová, M., Morand, S. and Šimková, A. S. (2008). Metazoan parasites of freshwater cyprinid fish (Leuciscus cephalus): testing biogeographical hypotheses of species diversity. Parasitology 135, 14171435.Google Scholar
Soininen, J., McDonald, R. and Hillebrand, H. (2007). The distance decay of similarity in ecological communities. Ecography 30, 312.Google Scholar
Spalding, M. D., Fox, H. E., Allen, G. R., Davidson, N., Ferdaña, Z. A., Finlayson, M., Halpern, N. S., Jorge, M. A., Lombana, A., Lourie, S. A., Martin, K. D., McManus, E., Molnar, J., Recchia, C. A. and Robertson, J. (2007). Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57, 573583.Google Scholar
Timi, J. T. and Lanfranchi, A. L. (2013). Ontogenetic changes in heterogeneity of parasite communities of fish: disentangling the relative role of compositional versus abundance variability. Parasitology 140, 309317.Google Scholar
Timi, J. T. and MacKenzie, K. (2015). Parasites in fisheries and mariculture. Parasitology 142, 14.Google Scholar
Timi, J. T., Luque, J. L. and Sardella, N. H. (2005). Parasites of Cynoscion guatucupa along South American Atlantic coasts: evidence for stock discrimination. Journal of Fish Biology 67, 16031618.Google Scholar
Timi, J. T., Lanfranchi, A. L. and Luque, J. L. (2010). Similarity in parasite communities of the teleost fish Pinguipes brasilianus in the southwestern Atlantic: infracommunities as a tool to detect geographical patterns. International Journal for Parasitology 40, 243254.Google Scholar
Vales, D. G., García, N. A., Crespo, E. A. and Timi, J. T. (2011). Parasites of a marine benthic fish in the Southwestern Atlantic: searching for geographical recurrent patterns of community structure. Parasitology Research 108, 261272.Google Scholar
Waltari, E., Hoberg, E. P., Lessa, E. P. and Cook, J. A. (2007). Eastward Ho: phylogeographical perspectives on colonization of hosts and parasites across the Beringian nexus. Journal of Biogeography 34, 561574.Google Scholar