Skip to main content Accessibility help

Past and future perspectives on mathematical models of tick-borne pathogens

  • R. A. NORMAN (a1), A. J. WORTON (a2) and L. GILBERT (a3)


Ticks are vectors of pathogens which are important both with respect to human health and economically. They have a complex life cycle requiring several blood meals throughout their life. These blood meals take place on different individual hosts and potentially on different host species. Their life cycle is also dependent on environmental conditions such as the temperature and habitat type. Mathematical models have been used for the more than 30 years to help us understand how tick dynamics are dependent on these environmental factors and host availability. In this paper, we review models of tick dynamics and summarize the main results. This summary is split into two parts, one which looks at tick dynamics and one which looks at tick-borne pathogens. In general, the models of tick dynamics are used to determine when the peak in tick densities is likely to occur in the year and how that changes with environmental conditions. The models of tick-borne pathogens focus more on the conditions under which the pathogen can persist and how host population densities might be manipulated to control these pathogens. In the final section of the paper, we identify gaps in the current knowledge and future modelling approaches. These include spatial models linked to environmental information and Geographic Information System maps, and development of new modelling techniques which model tick densities per host more explicitly.


Corresponding author

*Corresponding author. School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK. E-mail:


Hide All
Bolzoni, L., Rosa, R., Cagnacci, F. and Rizzoli, A. (2012). Effect of deer density on tick infestation of rodents and the hazard of tick-borne encephalitis. II: population and infection models. International Journal for Parasitology 42, 373381.
Braga, J. F. (2012). Predicting current and future tick abundance across Scotland . Masters thesis, University of Aberdeen, UK.
Cagnacci, F., Bolzoni, L., Rosa, R., Carpi, G., Hauffe, H. C., Valent, M., Tagliapietra, V., Kazimirova, M., Koci, J., Stanko, M., Lukan, M., Henttonen, H. and Rizzoli, A. (2012). Effects of deer density on tick infestation of rodents and the hazard of tick-borne encephalitis. I: empirical assessment. International Journal of Parasitology 42, 365372.
Cooksey, L. M., Haile, D. G. and Mount, G. A. (1990). Computer simulation of rocky mountain spotted fever transmission by the American dog tick (Acari, Ixodidae). Journal of Medical Entomology 27, 686696.
Diekmann, O., Heesterbeek, J. A. P. and Roberts, M. G. (2010). The construction of next-generation matrices for compartmental epidemic models. Journal of the Royal Society Interface 7, 873885.
Dobson, A. (2014). History and complexity in tick-host dynamics: discrepancies between ‘real’ and ‘visible’ tick populations. Parasites and Vectors 7, 231.
Dobson, A. and Randolph, S. (2011 a). Modelling the effects of recent changes in climate, host density and acaricide treatments on population dynamics of Ixodes ricinus in the UK. Journal of Applied Ecology 48, 10291037.
Dobson, A., Finnie, T. and Randolph, S. (2011 b). A modified matrix model to describe the seasonal population ecology of the European tick Ixodes ricinus . Journal of Applied Ecology 48, 10171028.
Dunn, J. M., Davis, S., Staecy, A. and Diuk-Wasser, M. A. (2013). A simple model for the establishment of tick-borne pathogens of Ixodes scapularis: a global sensitivity analysis of R0 . Journal of Theoretical Biology 335, 213221.
Ferreri, L., Giacobini, M., bajardi, P., Bertolotti, L., Bolzoni, L., Tagliapietre, V., Rizzoli, A. and Rosa, R. (2014). Pattern of tick aggregation on mice: larger than expected distribution tail enhances the spread of tick-borne pathogens. PLoS Computational Biology 10, e1003931.
Gardiner, W. P., Gettinby, G. and Gray, J. S. (1981). Models based on weather for the development phases of the sheep tick, Ixodes ricinus L. Veterinary Parasitology 9, 7586.
Gilbert, L. (2015). Louping ill virus in the UK: a review of the hosts, transmission and ecological consequences of control. Experimental and Applied Acarology pp. 112. DOI 10.1007/s10493-015-9952-xFirst online: 24 July 2015.
Gilbert, L., Aungier, J. and Tomkins, J. L. (2014). Climate of origin affects tick (Ixodes ricinus) host-seeking behaviour in response to temperature: implications for resilience to climate change? Ecology and Evolution 4, 11861198.
Gilbert, L., Norman, R., Laurenson, K. M., Reid, H. W. and Hudson, P. J. (2001). Disease persistence and apparent competition in a three-host community: an empirical and analytical study of large-scale, wild populations. Journal of Animal Ecology 70, 10531061.
Gilbert, L., Jones, L. D., Laurenson, M. K., Gould, E. A., Reid, H. W. and Hudson, P. J. (2004). Ticks need not bite their red grouse hosts to infect them with louping ill virus. Proceedings of the Royal Society B, Biological Sciences 271, S202S205.
Gilbert, L., Maffey, G., Ramsay, S. L. and Hester, A. J. (2012). The effect of deer management on the abundance of Ixodes ricinus in Scotland. Ecological Applications 22, 658667.
Gray, J. S. (1987). Mating and behavioural diapause in Ixodes ricinus L. Experimental and Applied Acarology 3, 6171.
Gray, J. S. (1998). The ecology of ticks transmitting Lyme borreliosis . Experimental and Applied Acarology. 22, 249258.
Hancock, P., Brackley, R. and Palmer, S. (2011). Modelling the effect of temperature variation on the seasonal dynamics of Ixodes ricinus tick populations. International Journal for Parasitology 41, 513522.
Harrison, A., Newey, S., Gilbert, L., Haydon, D. T. and Thirgood, S. (2010). Culling wildlife hosts to control disease: mountain hares, red grouse and louping ill virus. Journal of Applied Ecology 47, 926930.
Hartemink, N. A., Randolph, S. E., Davis, S. A. and Heesterbeek, J. A. P. (2008). The basic reproduction number for complex disease systems: defining R-0 for tick-borne infections. American Naturalist 171, 743754.
Hönig, V., Švec, P., Masař, O. and Grubhoffer, L. (2011). Tick-borne disease risk model for South Bohemia (Czech Republic). In GIS Ostrava 2011, Proceedings of Eighth International Symposium, ISBN 978-80-248-2406-2. 255268.
Hudson, P. J., Norman, R., Laurenson, M. K., Newborn, D., Gaunt, M., Gould, E., Reid, H., Bowers, R. G. and Dobson, A. P. (1995). Persistence and transmission of tick-borne viruses: Ixodes ricinus and louping Ill virus in red grouse populations. Parasitology 111, s49s58.
Jones, L. D., Davies, C. R., Steele, C. M. and Nuttall, P. A. (1987). A novel mode of arbovirus transmission involving a nonviraemic host. Science 237, 775777.
Jones, L. D., Gaunt, M., Hails, R. S., Laurenson, K., Hudson, P. J., Reid, H., Henbest, P. and Gould, E. A. (1997). Efficient transfer of louping-ill virus between infected and uninfected ticks co-feeding on mountain hares (Lepus timidus). Medical and veterinary Entomology 11, 172176.
Jones, E. O., Webb, S. D., Ruiz-Fons, F. J., Albon, S. and Gilbert, L. (2011). The effect of landscape heterogeneity and host movement on a tick-borne pathogen. Theoretical Ecology 4, 435448.
Jore, S., Viljugrein, H., Hofshagen, M., Brun-Hansen, H., Kristoffersen, A. B., Nygård, K., Brun, E., Ottesen, P., Sævik, B. K. and Ytrehus, B. (2011). Multi-source analysis reveals latitudinal and altitudinal shifts in range of Ixodes ricinus at its northern distribution limit. Parasites & Vectors 4. Article Number 84.
Labuda, M. and Nuttall, P. A. (2004). Tick borne viruses. Parasitology. 129, S221S245.
Laurenson, M. K., Norman, R., Reid, H. W., Pow, I., Newborn, D. and Hudson, P. J. (2000). The role of lambs in louping-ill virus amplification. Parasitology 120, 97104.
Laurenson, M. K., Norman, R. A., Gilbert, L., Reid, H. W. and Hudson, P. J. (2003). Identifying disease reservoirs in complex systems: mountain hares as reservoirs of ticks and louping-ill virus, pathogens of red grouse. Journal of Animal Ecology 72, 177185.
Lorenz, A., Dhingra, R., Chang, H. H., Bisanzio, D., Liu, Y. and Remais, J. V. (2014). Inter-model comparison of the landscape determinants of vector-borne disease: implications for epidemiological and entomological risk modeling. PLoS ONE 9, e103163.
Medlock, J., Hansford, K. M., Bormane, A., Derdakova, M., Estrada-Peña, A., George, J. C., Golovljova, I., Jaenson, T. G., Jensen, J. K., Jensen, P. M., Kazimirova, M., Oteo, J. A., Papa, A., Pfister, K., Plantard, O., Randolph, S. E., Rizzoli, A., Santos-Silva, M. M., Sprong, H., Vial, L., Hendrickx, G., Zeller, H. and Van Bortel, W. (2013). Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasites & Vectors 6, 1.
Mount, G. A. and Haile, D. G. (1989). Computer simulation of population dynamics of the American dog tick (Acari: Ixodidae). Journal of Medical Entomology 26, 6076.
Norman, R., Bowers, R. G., Begon, M. and Hudson, P. J. (1999). Persistence and dynamics of louping Ill in relation to host abundance. Journal of Theoretical Biology 200, 111118.
Norman, R., Ross, D., Laurenson, M. K., and Hudson, P. J. (2004). The role of non-viraemic transmission on the persistence and dynamics of a tick-borne virus louping ill in red grouse (Lagopus lagopus scoticus) and mountain hares (Lepus timidus). Journal of Mathematical Biology 48, 119134.
Nuttall, P. A. and Jones, L. D. (1991). Non-viraemic tick-borne virus transmission: mechanism and significance. In Modern Acarology. Volume II: Proceedings of the Eighth International Congress of Acarology held in Ceske Budejovice, Czechoslovakia (ed. Dusbabek, F., Buvka, V.), pp. 36. Ceske Budejovice, Czechoslovakia, 6–11 August 1990.
Ogden, N. H., Lindsay, A. R., Charron, D., Beauchamp, G., Maarouf, A., O'Callaghan, C. J., Waltner-Tiews, D. and Barker, I. K. (2004). Investigation of the relationships between temperature and development rates of the tick Ixodes scapularis (Acari: Ixodidae) in the laboratory and field. Journal of Medical Entomology, 41, 622633.
Ogden, N. H., Bigras-Poulin, M., O'Callaghan, C. J., Barker, I. K., Lindsay, L. R., Maarouf, A., Smoyer-omic, K. E., Waltner-Toews, D. and Charron, D. (2005). A dynamic population model to investigate effects of climate on geographic range and seasonality of the tick Ixodes scapularis . International Journal for Parasitology 35, 375389.
Ogden, N. H., Bigras-Poulin, M., O'Callaghan, C. J., Barker, I. K., Kurtenbach, K., Lindsay, L. R. and Charron, D. F. (2007). Vector seasonality, host infection dynamics and fitness of pathogens transmitted by the tick Ixodes scapularis . Parasitology 134, 209227.
Ogden, N. H., Lindsay, L. R. and Leighton, P. A. (2013). Predicting the rate of invasion of the agent of Lyme disease Borrelia burgdorferi. Journal of Applied Ecology 50, 510518.
Park, K. J., Robertson, P. A., Campbell, S. T., Foster, R., Russell, Z. M., Newborn, D. and Hudson, P. J. (2001). The role of invertebrates in the diet, growth and survival of red grouse (Lagopus lagopus scoticus) chicks. Journal of Zoology 254, 137145.
Perkins, S. (2003). Transmission dynamics of tick-borne diseases associated with small mammals . Ph.D. thesis, University of Stirling, Scotland, UK.
Perret, J. L., Guigoz, E., Rais, O. and Gern, L. (2000). Influence of saturation deficit and temperature on Ixodes ricinus tick questing activity in a Lyme borreliosis-endemic area (Switzerland). Parasitology Research 86, 554557.
Porco, T. C. (1999). A mathematical model of the ecology of Lyme disease. IMA Journal of Mathematics Applied in Medicine and Biology 16, 261296.
Porter, R., Norman, R. and Gilbert, L. (2011). Controlling tick-borne diseases through domestic animal management: a theoretical approach. Theoretical Ecology 4, 321339.
Porter, R., Norman, R. A. and Gilbert, L. (2013 a). An alternative to killing? Treating wildlife hosts to protect a valuable species from a shared parasite. Parasitology 140, 247–225.
Porter, R., Norman, R. and Gilbert, L. (2013 b). An empirical model to test how ticks and louping ill virus can be controlled by treating red grouse with acaricide. Medical Veterinary Entomology 27, 237246. 10.
Randolph, S. E. (2008). Dynamics of tick-borne disease systems: minor role of recent climate change. Revue Scientifique et Technique, Office International des Epizooties 27, 367–281.
Randolph, S. E. and Rogers, D. J. (1997). A generic population model for the African tick Rhipicephalus appendiculatus . Parasitology 115, 265279.
Randolph, S. E., Green, R., Hoodless, A. and Peacey, M. F. (2002). An empirical, quantitative framework for the seasonal population dynamics of the tick Ixodes ricinus . International Journal for Parasitology 32, 979989.
Reid, H. W. (1976). The epidemiology of Louping-ill. In: Tick-Borne Diseases and Their Vectors (ed. Wilde, J. K. H.), Proceedings of the International Conference held in Edinburgh September 27 October 1, 1976. Edinburgh University Press, UK.
Rosa, R. and Pugliese, A. (2007). Effects of tick population dynamics and host densities on the persistence of tick-borne infections. Mathematical Biosciences 208, 216240.
Rosa, R., Pugliese, A., Norman, R. and Hudson, P. J. (2003). Thresholds for disease persistence in models for tick-borne infections including non-viraemic transmission, extended feeding and tick aggregation. Journal of Theoretical Biology 224, 359376.
Ruiz-Fons, F. and Gilbert, L. (2010). The role of deer (Cervus elaphus and Capreolus capreolus) as vehicles to move ticks Ixodes ricinus between contrasting habitats. International Journal for Parasitology 40, 10131020.
Schwarz, A., Maier, W. A., Kistemann, T., Kampen, H. (2009). Analysis of the distribution of the tick Ixodes ricinus L. (Acari: Ixodidae) in a nature reserve of western Germany using geographic information systems. International Journal of Hygiene and Environmental Health 212, 8796.
Tagliapietra, V., Rosa, R., Arnoldi, D., Cagnacci, F., Capelli, G., Montarsi, F., Hauffe, H. C. and Rizzoli, A. (2011). Saturation deficit and deer density affect questing activity and local abundance of Ixodes ricinus (Acari, Ixodidae) in Italy. Veterinary Parasitology 183, 114124.
Tomkins, J. L., Aungier, J., Hazel, W. and Gilbert, L. (2014). Towards an evolutionary understanding of host seeking behaviour in the Borrelia burgdorferi sensu lato vector Ixodes ricinus: data and theory. PLoS ONE 9, e110028.
Watts, E. J., Palmer, S. C. F., Bowman, A. S., Irvine, R. J., Smith, A. and Travis, J. M. J. (2009). The effect of host movement on viral transmission dynamics in a vector-borne disease system. Parasitology 136, 12211234.
Wilson, M. L. and Spielman, A. (1985). Seasonal activity of immature Ixodes dammini (Acari:Ixodidae). Journal of Medical Entomology 26, 408414.
Wu, X., Duvvuri, V. R., Lou, Y., Ogden, N. H., Pelcat, Y. and Wu, J. (2013). Developing a temperature-driven map of the basic reproductive number of the emerging tick vector of Lyme disease Ixodes scapularis in Canada. Journal of Theoretical Biology 319, 5061.
Zeman, P. (1997). Objective assessment of risk maps of tick-born encephalitis and Lyme Borreliosis based on spatial patterns of located cases. International Journal of Epidemiology 26, 11211130.
Zeman, P., Pazdiora, P. and Benes, C. (2010). Spatio-temporal variation of tick-borne encephalitis (TBE) incidence in the Czech Republic: is the current explanation of the disease's rise satisfactory? Ticks and Tick-borne Diseases 1, 129140.
Zhang, Y. and Zhao, X.-Q. (2013). A reaction-diffusion Lyme disease model with seasonality. Society for Industrial and Applied Mathematics 73, 20772099.


Past and future perspectives on mathematical models of tick-borne pathogens

  • R. A. NORMAN (a1), A. J. WORTON (a2) and L. GILBERT (a3)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed