Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 13
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Fowler, A. C. and Déirdre Hollingsworth, T. 2016. The Dynamics of Ascaris lumbricoides Infections. Bulletin of Mathematical Biology, Vol. 78, Issue. 4, p. 815.


    Yakob, Laith Soares Magalhães, Ricardo J. Gray, Darren J. Milinovich, Gabriel Wardrop, Nicola Dunning, Rebecca Barendregt, Jan Bieri, Franziska Williams, Gail M. and Clements, Archie C.A. 2014. Modelling parasite aggregation: disentangling statistical and ecological approaches. International Journal for Parasitology, Vol. 44, Issue. 6, p. 339.


    Cobey, Sarah and Lipsitch, Marc 2013. Pathogen Diversity and Hidden Regimes of Apparent Competition. The American Naturalist, Vol. 181, Issue. 1, p. 12.


    Shrestha, S. Foxman, B. Weinberger, D. M. Steiner, C. Viboud, C. and Rohani, P. 2013. Identifying the Interaction Between Influenza and Pneumococcal Pneumonia Using Incidence Data. Science Translational Medicine, Vol. 5, Issue. 191, p. 191ra84.


    Yakob, Laith Williams, Gail M Gray, Darren J Halton, Kate Solon, Juan Antonio and Clements, Archie CA 2013. Slaving and release in co-infection control. Parasites & Vectors, Vol. 6, Issue. 1, p. 157.


    Basáñez, María-Gloria French, Michael D. Walker, Martin and Churcher, Thomas S. 2012. Paradigm lost: how parasite control may alter pattern and process in human helminthiases. Trends in Parasitology, Vol. 28, Issue. 4, p. 161.


    Fenton, Andy Viney, Mark E. and Lello, Jo 2010. Detecting interspecific macroparasite interactions from ecological data: patterns and process. Ecology Letters, Vol. 13, Issue. 5, p. 606.


    Karvonen, Anssi Seppälä, Otto and Tellervo Valtonen, E. 2009. Host immunization shapes interspecific associations in trematode parasites. Journal of Animal Ecology, Vol. 78, Issue. 5, p. 945.


    BEHNKE, J. M. 2008. Structure in parasite component communities in wild rodents: predictability, stability, associations and interactions .... or pure randomness?. Parasitology, Vol. 135, Issue. 07,


    BRADLEY, J. E. and JACKSON, J. A. 2008. Measuring immune system variation to help understand host-pathogen community dynamics. Parasitology, Vol. 135, Issue. 07,


    Basáñez, María-Gloria Razali, Karina Renz, Alfons and Kelly, David 2007. Density-dependent host choice by disease vectors: epidemiological implications of the ideal free distribution. Transactions of the Royal Society of Tropical Medicine and Hygiene, Vol. 101, Issue. 3, p. 256.


    Cattadori, I. M Albert, R. and Boag, B. 2007. Variation in host susceptibility and infectiousness generated by co-infection: the myxoma-Trichostrongylus retortaeformis case in wild rabbits. Journal of The Royal Society Interface, Vol. 4, Issue. 16, p. 831.


    Jackson, J.A. Pleass, R.J. Cable, J. Bradley, J.E. and Tinsley, R.C. 2006. Heterogenous interspecific interactions in a host–parasite system. International Journal for Parasitology, Vol. 36, Issue. 13, p. 1341.


    ×

Population biology of multispecies helminth infection: interspecific interactions and parasite distribution

  • C. BOTTOMLEY (a1), V. ISHAM (a2) and M.-G. BASÁÑEZ (a3)
  • DOI: http://dx.doi.org/10.1017/S0031182005007791
  • Published online: 23 May 2005
Abstract

Despite evidence for the existence of interspecific interactions between helminth species, there has been no theoretical exploration of their effect on the distribution of the parasite species in a host population. We use a deterministic model for the accumulation and loss of adult worms of 2 interacting helminth species to motivate an individual-based stochastic model. The mean worm burden and variance[ratio ]mean ratio (VMR) of each species, and the correlation between the two species are used to describe the distribution within different host age classes. We find that interspecific interactions can produce convex age-intensity profiles and will impact the level of aggregation (as measured by the VMR). In the absence of correlated exposure, the correlation in older age classes may be close to zero when either intra- or interspecific synergistic effects are strong. We therefore suggest examining the correlation between species in young hosts as a possible means of identifying interspecific interaction. The presence of correlation between the rates of exposure makes the interpretation of correlations between species more difficult. Finally we show that in the absence of interaction, strong positive correlations are generated by averaging across most age classes.

Copyright
Corresponding author
Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), Wolfson House, 4 Stephenson Way, London NW1 2HE. Tel: +44 (0)20 7679 5063. E-mail: h.bottomley@ucl.ac.uk
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Parasitology
  • ISSN: 0031-1820
  • EISSN: 1469-8161
  • URL: /core/journals/parasitology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: