Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T19:15:41.982Z Has data issue: false hasContentIssue false

Post-larval mortality of the endoparasitic isopod castrator Portunion conformis (Epicaridea: Entoniscidae) in the shore crab, Hemigrapsus oregonensis, with a description of the host response

Published online by Cambridge University Press:  06 April 2009

Armand M. Kuris
Affiliation:
Department of Biological Sciences and Marine Science Institute, University of California, Santa Barbara, California 93106
George O. Poinar
Affiliation:
Department of Invertebrate Pathology, Division of Entomology, University of California, Berkeley, California 94720
Roberta T. Hess
Affiliation:
Department of Invertebrate Pathology, Division of Entomology, University of California, Berkeley, California 94720

Summary

The shore crabs, Hemigrapsus oregonensis and H. nudus, sometimes kill the female endoparasitic entoniscid isopod, Portunion conformis, a parasitic castrator. Studies of host populations from Baja California, Mexico to Vancouver Island, Canada, show that the incidence of parasitized hosts with dead parasites and the percentage of the parasite population found dead vary markedly with locality but only occasionally with season. Both higher incidences of hosts with dead P. conformis and higher proportions of the total parasite population found dead are associated with (1) high prevalence of parasitism, (2) female hosts and (3) large hosts. Within a host, the proportion of the parasites that are dead is not related to the degree of multiple infection. Typically, either all or none of the parasites in a multiple infection are dead. Supernumerary juvenile parasites do not suffer differential mortality. The developmental stage of the female parasite does not seem to influence the likelihood of death. The presence of dead parasites may not confer an acquired immunity to re-infection. These features suggest that parasite death is typically the result of activation of a successful host defensive process rather than indicative of a defect on the part of the parasites. Parasitized female hosts can regain their reproductive capabilities following death of the parasite. Post-parasitic broods are smaller than normal. Reproductive recovery is presumed to provide the selective pressure favouring evolution of a lethal host response. The host-produced sheath surrounding female parasites is a haemocytic response. Sheaths enclosing dead parasites are thicker and more electron dense than those containing healthy parasites. The sheath of a healthy P. conformis may actually protect the parasite from a more intense host response.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R. M., Whitfield, P. J. & Mills, C. A. (1977). An experimental study of the population dynamics of an ectoparasitic digenean Transversotrema patialense: the cercarial and adult stages. Journal of Animal Ecology 46, 555–80.CrossRefGoogle Scholar
Beland, L. L. & King, E. B. (1976). Southwestern corn borer: suitability of larval stages for development of the tachinid parasite Lixophaga diatraeae. Environmental Entomology 5, 421–6.CrossRefGoogle Scholar
Bess, H. A. (1939). Investigations on the resistance of mealybugs (Homoptera) to parasitization by internal Hymenopterous parasites, with special reference to phagocytosis. Annals of the Entomological Society of America 32, 189226.CrossRefGoogle Scholar
Blumberg, D. (1977). Encapsulation of parasitoid eggs in soft scales (Homoptera: Coccidae). Ecological Entomology 2, 185–92.CrossRefGoogle Scholar
Bocquet-Védrine, J., Chassard-Bouchaud, C. & Hubert, M. (1977). Ultrastructure et fonction d'absorption du tégument des racines de la Sacculine (Crustacé Cirripède parasite). Biologie Cellulaire 30, 165–70.Google Scholar
Carlton, J. T. & Kuris, A. M. (1975). Keys to decapod Crustacea. In Light's Manual: Intertidal Invertebrates of the Central California Coast, (ed. Smith, R. I. and Carlton, J. T.), pp. 385412. Berkeley: The University of California Press.Google Scholar
Compere, H. & Smith, H. S. (1932). The control of the citrophilus mealybug, Pseudococcus gahani, by Australian parasites. Hilgardia 6, 585618.CrossRefGoogle Scholar
Danini, E. S. (1955). Beiträge zur vergleichenden Histologie des Blutes und des Bindegewebes III. Über die entzündliche Bindegewebesneubildung beim Flusskrebs (Potamobius leptodactylus). Zeitschrift für mikroskopische Anatomie Forschung 3, 558608.Google Scholar
Drach, P. (1941). Nouvelle conception sur les rapports éthologiques des entonisciens et de leurs hôtes. Critique de la théorie classique ectoparasitaire. Comptes rendus Académie des Sciences, Paris 213, 80–2.Google Scholar
Fisher, R. C. (1971). Aspects of the physiology of endoparasitic Hymenoptera. Biological Reviews 46, 243–78.CrossRefGoogle Scholar
Hubert, M., Chassard-Bouchaud, C. & Bocquet-Védrine, J. (1976). Aspects ultrastructuraux des hémocytes de Carcinus maenas L. (Crustacé Décapode), parasité par Sacculina carcini Thompson (Crustacé Cirripède): activité réactionnelle, genèse de collagène. Comptes rendus Académie des Sciences, Paris 283, 789–92.Google Scholar
Kuris, A. M. (1971). Population interactions between a shore crab and two symbionts Ph.D. thesis., University of California, Berkeley.Google Scholar
Kuris, A. M. (1974). Trophic interactions: similarity of parasitic castrators to parasitoids. Quarterly Review of Biology 49, 129–48.CrossRefGoogle Scholar
Lightner, D. V. & Fontaine, C. T. (1975). A mycosis of the American lobster, Homarus americanus, caused by Fusarium sp. Journal of Invertebrate Pathology 25, 239–45.CrossRefGoogle ScholarPubMed
Miyashita, Y. (1941). Observations on an entoniscid parasite of Eriocheir japonicus de Haan, Entionella fluviatilis n.g., n. sp. Japanese Journal of Zoology 9, 251–67.Google Scholar
Muldrew, J. A. (1953). The natural immunity of the larch sawfly (Pristophora erichsonii) (Htg.) to the introduced parasite Mesoleius tenthredinus Morley, in Manitoba and Saskatchewan. Canadian Journal of Zoology 31, 313–32.CrossRefGoogle Scholar
Pantel, J. (1910). Recherches sur les Diptères à larves entomobies. 1. Caractères parasitiques aux points de vue biologique, éthologique et histologique. La Cellule 26, 27216.Google Scholar
Poinar, G. O. Jr. (1969). Arthropod immunity to worms. In Immunity to Parasitic Animals, vol. 1 (ed. Jackson, G. J., Herman, R. and Singer, J.), pp. 173209. New York: Appleton-Century-Crofts.Google Scholar
Poinar, G. O. Jr & Hess, R.. (1977). Cellular responses in decapod crustaceans to Ascarophis spp. (Spirurida:Nematoda). In Comparative Pathobiology, vol. 3 (ed. Bulla, L. A. Jr. and Cheng, T. C.), pp. 135–54. New York: Plenum.CrossRefGoogle Scholar
Puttler, B. (1961). Biology of Hyposoter exiguae (Hymenoptera: Ichneumonidae), a parasite of lepidopterous larvae. Annals of the Entomological Society of America 54, 2530.CrossRefGoogle Scholar
Puttler, B. & van den Bosch, R. (1959). Partial immunity of Laphygma exigua (Hübner) to the parasite Hyposoter exiguae (Viereck). Journal of Economic Entomology 52, 327–9.Google Scholar
Salt, G. (1963). The defense reactions of insects to metazoan parasites. Parasitology 53, 527642.CrossRefGoogle ScholarPubMed
Salt, G. (1968). The resistance of insect parasitoids to the defense reactions of their hosts. Biological Reviews 43, 200–33.CrossRefGoogle Scholar
Shapiro, M. (1969). Immunity of insect hosts to insect parasites. In Immunity to Parasitic Animals, vol. 1. (ed. Jackson, G. J., Herman, R. and Singer, I.), pp. 211–28. New York: Appleton-Century-Crofts.Google Scholar
Shiino, S. M. (1942). On the parasitic isopods of the family Entoniscidae, especially those found in the vicinity of Seto. Memoirs of the College of Science, Kyoto B 17, 3776.Google Scholar
Sokal, R. R. & Rohlf, F. J. (1969). Biometry. San Francisco: Freeman.Google Scholar
Sparks, A. K. & Fontaine, C. T. (1973). Host response in the white shrimp, Penaeus setiferus, to infection by the larval trypanorhynchid cestode Prochristianella penaei. Journal of Invertebrate Pathology 22, 213–19.CrossRefGoogle ScholarPubMed
Stang-Voss, C. (1971). Zur Ultrastruktur der Blutzellen wirbelloser Tiere. V. Über die Hämocyten von Astacus astacus (L.) (Crustaces). Zeitschrift für Zellforschung und mikroskopische Anatomie 122, 6875.CrossRefGoogle Scholar
Streams, F. A. (1968). Factors affecting the susceptibility of Pseudeucoila bochei eggs to encapsulation by Drosophila melanogaster. Journal of Invertebrate Pathology 12, 379–87.Google Scholar
Streams, F. A. (1971). Encapsulation of insect parasites in super-parasitized hosts. Entomologia Experimentalis et Applicata 14, 484–90.CrossRefGoogle Scholar
Timberlake, P. H. (1912). Technical results from the gypsy moth parasite laboratory. V. Experimental parasitism: a study of the biology of Limnerium validum (Cresson). United States Department of Agriculture, Bureau of Entomology Technical Series 19, 7192.Google Scholar
van den Bosch, R. & Dietrick, E. J. (1959). The interrelationships of Hypera brunneipennis (Coleoptera:Curculionidae) and Bathyplectus curculionis (Hymenoptera:Ichneumonidae) in Southern California. Annals of the Entomological Society of America 52, 609–16.Google Scholar
Veillet, A. (1945). Recherches sur le parasitisme des Crabes et des Galathées par les Rhizocéphales et les Epicarides. Annales de l' Institut Océanographique de Monaco 22, 193341.Google Scholar
Vinson, S. B. (1977). Insect host responses against parasitoids and the parasitoids' resistance: with emphasis on the Lepidoptera-Hymenoptera association. In Comparative Pathobiology, vol. 3 (ed. Bulla, L. A. and Cheng, T. C.), pp. 103–25. New York: Plenum.Google Scholar
White, I. C. (1972). On the ecology of an adult digenetic trematode Proctoeces subtenuis from a lamellibranch host Scrobicularia plana. Journal of the Marine Biological Association of the United Kingdom 52, 457–67.CrossRefGoogle Scholar