Skip to main content Accesibility Help

Remote sensing, geographical information system and spatial analysis for schistosomiasis epidemiology and ecology in Africa

  • C. Simoonga (a1) (a2), J. Utzinger (a3), S. Brooker (a4) (a5), P. Vounatsou (a3), C. C. Appleton (a6), A. S. Stensgaard (a7) (a8), A. Olsen (a7) and T. K. Kristensen (a7)...

Beginning in 1970, the potential of remote sensing (RS) techniques, coupled with geographical information systems (GIS), to improve our understanding of the epidemiology and control of schistosomiasis in Africa, has steadily grown. In our current review, working definitions of RS, GIS and spatial analysis are given, and applications made to date with RS and GIS for the epidemiology and ecology of schistosomiasis in Africa are summarised. Progress has been made in mapping the prevalence of infection in humans and the distribution of intermediate host snails. More recently, Bayesian geostatistical modelling approaches have been utilized for predicting the prevalence and intensity of infection at different scales. However, a number of challenges remain; hence new research is needed to overcome these limitations. First, greater spatial and temporal resolution seems important to improve risk mapping and understanding of transmission dynamics at the local scale. Second, more realistic risk profiling can be achieved by taking into account information on people's socio-economic status; furthermore, future efforts should incorporate data on domestic access to clean water and adequate sanitation, as well as behavioural and educational issues. Third, high-quality data on intermediate host snail distribution should facilitate validation of infection risk maps and modelling transmission dynamics. Finally, more emphasis should be placed on risk mapping and prediction of multiple species parasitic infections in an effort to integrate disease risk mapping and to enhance the cost-effectiveness of their control.

Corresponding author
*Corresponding author. Christopher Simoonga, Ministry of Health, P.O. Box 30205, 10101 Lusaka, Zambia. Tel.: +260 211 253-053; Fax: +260 211 253-053; E-mail:
Hide All
Abdel-Rahman, M. S., El-Bahy, M. M., Malone, J. B., Thompson, N. M. and El-Bahy, N. M. (2001). Geographical information systems as a tool for control program management for schistosomiasis in Egypt. Acta Tropica 79, 4957.
Appleton, C. C. (1978). Review of literature on abiotic factors influencing the distribution and life-cycles of bilharziasis intermediate host snails. Malacological Review 11, 125.
Arinola, O., Arinola, A. and Ojewale, S. (1996). Control of urinary schistosomiasis in Nigeria. World Health Forum 17, 291292.
Bailey, T. C. and Gatrell, A. C. (1995). Interactive Spatial Data Analysis. Addison-Wesley, Reading, MA, USA.
Beck-Wörner, C., Raso, G., Vounatsou, P., N'Goran, E. K., Rigo, G., Parlow, E. and Utzinger, J. (2007). Bayesian spatial risk prediction of Schistosoma mansoni infection in western Côte d'Ivoire using a remotely-sensed digital elevation model. American Journal of Tropical Medicine and Hygiene 76, 956963.
Booth, M., Vennervald, B. J., Kenty, L., Butterworth, A. E., Kariuki, H. C., Kadzo, H., Ireri, E., Amaganga, C., Kimani, G., Mwatha, J. K., Otedo, A., Ouma, J. H., Muchiri, E. and Dunne, D. W. (2004). Micro-geographical variation in exposure to Schistosoma mansoni and malaria, and exacerbation of splenomegaly in Kenyan school-aged children. BMC Infectious Diseases 4, 13.
Brooker, S. (2002). Schistosomes, snails and satellites. Acta Tropica 82, 207214.
Brooker, S. (2007). Spatial epidemiology of human schistosomiasis in Africa: risk models, transmission dynamics and control. Transactions of the Royal Society of Tropical Medicine and Hygiene 101, 18.
Brooker, S., Clements, A. C. A. and Bundy, D. A. P. (2006). Global epidemiology, ecology and control of soil-transmitted helminth infections. Advances in Parasitology 62, 221261.
Brooker, S., Hay, S. I. and Bundy, D. A. P. (2002 a). Tools from ecology: useful for evaluating infection risk models? Trends in Parasitology 18, 7074.
Brooker, S., Hay, S. I., Issae, W., Hall, A., Kihamia, C. M., Lwambo, N. J. S., Wint, W., Rogers, D. J. and Bundy, D. A. P. (2001). Predicting the distribution of urinary schistosomiasis in Tanzania using satellite sensor data. Tropical Medicine and International Health 6, 9981007.
Brooker, S., Hay, S. I., Tchuem Tchuente, L. A. and Ratard, R. (2002 b). Using NOAA-AVHRR data to model human helminth distributions in planning disease control in Cameroon, West Africa. Photogrammetric Engineering and Remote Sensing 68, 175179.
Brooker, S., Kabatereine, N. B., Gyapong, J. O., Stothard, J. R. and Utzinger, J. (2009). Rapid assessment of schistosomiasis and other neglected tropical diseases in the context of integrated control programmes in Africa. Parasitology 136, doi: 10.1017/S0031182009005940
Brooker, S. and Michael, E. (2000). The potential of geographical information systems and remote sensing in the epidemiology and control of human helminth infections. Advances in Parasitology 47, 245288.
Brooker, S., Rowlands, M., Haller, L., Savioli, L. and Bundy, D. A. P. (2000). Towards an atlas of human helminth infection in sub-Saharan Africa: the use of geographical information systems (GIS). Parasitology Today 16, 303307.
Brooker, S. and Utzinger, J. (2007). Integrated disease mapping in a polyparasitic world. Geospatial Health 1, 141146.
Brown, D. S. (1994). Freshwater Snails of Africa and their Medical Importance. Taylor & Francies (2nd ed.), London, UK, 1608.
Clements, A. C. A., Brooker, S., Nyandindi, U., Fenwick, A. and Blair, L. (2008 a). Bayesian spatial analysis of a national urinary schistosomiasis questionnaire to assist geographic targeting of schistosomiasis control in Tanzania, East Africa. International Journal for Parasitology 38, 401415.
Clements, A. C. A., Garba, A., Sacko, M., Touré, S., Dembelé, R., Landouré, A., Bosque-Oliva, E., Gabrielli, A. F. and Fenwick, A. (2008 b). Mapping the probability of schistosomiasis and associated uncertainty, West Africa. Emerging Infectious Diseases 14, 16291632.
Clements, A. C. A., Lwambo, N. J. S., Blair, L., Nyandindi, U., Kaatano, G., Kinung'hi, S., Webster, J. P., Fenwick, A. and Brooker, S. (2006 a). Bayesian spatial analysis and disease mapping: tools to enhance planning and implementation of a schistosomiasis control programme in Tanzania. Tropical Medicine and International Health 11, 490503.
Clements, A. C. A., Moyeed, R. and Brooker, S. (2006 b). Bayesian geostatistical prediction of the intensity of infection with Schistosoma mansoni in East Africa. Parasitology 133, 711719.
Clennon, J. A., King, C. H., Muchiri, E. M., Kariuki, H. C., Ouma, J. H., Mungai, P. and Kitron, U. (2004). Spatial patterns of urinary schistosomiasis infection in a highly endemic area of coastal Kenya. American Journal of Tropical Medicine and Hygiene 70, 443448.
Clennon, J. A., Mungai, P. L., Muchiri, E. M., King, C. H. and Kitron, U. (2006). Spatial and temporal variations in local transmission of Schistosoma haematobium in Msambweni, Kenya. American Journal of Tropical Medicine and Hygiene 75, 10341041.
Cline, B. L. (1970). New eyes for epidemiologists: aerial photography and other remote sensing techniques. American Journal of Epidemiology 92, 8589.
Craig, M. H., Snow, R. W. and le Sueur, D. (1999). A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitology Today 15, 105111.
Cross, E. R. and Bailey, R. C. (1984). Prediction of areas endemic for schistosomiasis through use of discriminant analysis of environmental data. Military Medicine 149, 2830.
Cross, E. R., Sheffield, C., Perrine, R. and Pazzaglia, G. (1984). Predicting areas endemic for schistosomiasis using weather variables and a Landsat data base. Military Medicine 149, 542544.
Elith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. M., Peterson, A. T., Phillips, S. J., Richardson, K., Scachetti-Pereira, R., Schapire, R., Soberón, J., Williams, S., Wisz, M. S. and Zimmermann, N. E. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography 29, 129151.
ESRI (1990). Understanding GIS: The ARC/INFO Method. Environmental System Research Institute. Redlands, CA, USA.
Fenwick, A. (2006). Waterborne infectious diseases – could they be consigned to history? Science 313, 10771081.
Gemperli, A. and Vounatsou, P. (2004). Fitting generalized linear mixed models for point-referenced data. Journal of Modern Applied Statistical Methods 2, 497511.
Guerra, C. A., Hay, S. I., Lucioparedes, L. S., Gikandi, P. W., Tatem, A. J., Noor, A. M. and Snow, R. W. (2007). Assembling a global database of malaria parasite prevalence for the malaria atlas project. Malaria Journal 6, 17.
Handzel, T., Karanja, D. M. S., Addiss, D. G., Hightower, A. W., Rosen, D. H., Colley, D. G., Andove, J., Slutsker, L. and Secor, W. E. (2003). Geographic distribution of schistosomiasis and soil-transmitted helminths in western Kenya: implications for anthelminthic mass treatment. American Journal of Tropical Medicine and Hygiene 69, 318323.
Hay, S. I. and Snow, R. W. (2006). The malaria atlas project: developing global maps of malaria risk. PLoS Medicine 3, e473.
Hay, S. I., Tatem, A. J., Graham, A. J., Goetz, S. J. and Rogers, D. J. (2006). Global environmental data for mapping infectious disease distribution. Advances in Parasitology 62, 3777.
Herbreteau, V., Salem, G., Souris, M., Hugot, J. P. and Gonzalez, J. P. (2007). Thirty years of use and improvement of remote sensing, applied to epidemiology: from early promises to lasting frustration. Health and Place 13, 400403.
Kabatereine, N. B., Brooker, S., Koukounari, A., Kazibwe, F., Tukahebwa, E. M., Fleming, F. M., Zhang, Y., Webster, J. P., Stothard, J. R. and Fenwick, A. (2007). Impact of a national helminth control programme on infection and morbidity in Ugandan schoolchildren. Bulletin of the World Health Organization 85, 1999.
Kabatereine, N. B., Brooker, S., Tukahebwa, E. M., Kazibwe, F. and Onapa, A. W. (2004). Epidemiology and geography of Schistosoma mansoni in Uganda: implications for planning control. Tropical Medicine and International Health 9, 372380.
Kristensen, T. K., Malone, J. B. and McCarroll, J. C. (2001). Use of satellite remote sensing and geographic information systems to model the distribution and abundance of snail intermediate hosts in Africa: a preliminary model for Biomphalaria pfeifferi in Ethiopia. Acta Tropica 79, 7378.
Koukounari, A., Gabrielli, A. F., Toure, S., Bosque-Oliva, E., Zhang, Y., Sellin, B., Donnelly, C. A., Fenwick, A. and Webster, J. P. (2007). Schistosoma haematobium infection and morbidity before and after large-scale administration of praziquantel in Burkina Faso. Journal of Infectious Diseases 196, 659669.
Liang, S., Seto, E. Y. W., Remais, J. V., Zhong, B., Yang, C., Hubbard, A., Davis, G. M., Gu, X. G., Qiu, D. C. and Spear, R. C. (2007). Environmental effects on parasitic disease transmission exemplified by schistosomiasis in western China. Proceedings of the National Academy of Sciences of the United States of America 104, 71107115.
Lindsay, S. W. and Thomas, C. J. (2000). Mapping and estimating the population at risk from lymphatic filariasis in Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene 94, 3745.
Malone, J. B. (2005). Biology-based mapping of vector-borne parasites by geographic information systems and remote sensing. Parassitologia 47, 2750.
Malone, J. B., Huh, O. K., Fehler, D. P., Wilson, P. A., Wilensky, D. E., Holmes, R. A. and Elmagdoub, A. I. (1994). Temperature data from satellite imagery and the distribution of schistosomiasis in Egypt. American Journal of Tropical Medicine and Hygiene 50, 714722.
Malone, J. B., Yilma, J. M., McCarroll, J. C., Erko, B., Mukaratirwa, S. and Zhou, X. Y. (2001). Satellite climatology and environmental risk of Schistosoma mansoni in Ethiopia and East Africa. Acta Tropica 79, 5972.
Martens, W. J. M., Jetten, T. H. and Focks, D. A. (1997). Sensitivity of malaria, schistosomiasis and dengue to global warming. Climate Change 35, 145156.
Matthys, B., Tschannen, A. B., Tian-Bi, N. T., Comoé, H., Diabaté, S., Traoré, M., Vounatsou, P., Raso, G., Gosoniu, L., Tanner, M., Cissé, G., N'Goran, E. K. and Utzinger, J. (2007). Risk factors for Schistosoma mansoni and hookworm in urban farming communities in western Côte d'Ivoire. Tropical Medicine and International Health 12, 709723.
Moodley, I., Kleinschmidt, I., Sharp, B., Craig, M. and Appleton, C. (2003). Temperature-suitability maps for schistosomiasis in South Africa. Annals of Tropical Medicine and Parasitology 97, 617627.
Mukaratirwa, S., Malone, J. B., McCarroll, J. C. and Kristensen, T. K. (1999). Satellite surveillance, geographical information systems and the seasonal suitability of environment for the development of the snail-parasite system of urinary and intestinal schistosomiasis in Zimbabwe. Proceedings of the Workshop on Medical and Veterinary Malacology in Africa, Harare, Zimbabwe, pp. 265271. Publication of the Danish Bilharziasis Laboratory, Copenhagen, Denmark.
Raso, G., Matthys, B., N'Goran, E. K., Tanner, M., Vounatsou, P. and Utzinger, J. (2005). Spatial risk prediction and mapping of Schistosoma mansoni infections among schoolchildren living in western Côte d'Ivoire. Parasitology 131, 97108.
Raso, G., Vounatsou, P., Singer, B. H., N'Goran, E. K., Tanner, M. and Utzinger, J. (2006). An integrated approach for risk profiling and spatial prediction of Schistosoma mansoni-hookworm coinfection. Proceedings of the National Academy of Sciences, USA 103, 69346939.
Rinaldi, L., Musella, V., Biggeri, A. and Cingoli, G. (2006). New insights into the application of geographical information systems and remote sensing in veterinary parasitology. Geospatial Health 1, 3347.
Robinson, T. P. (2000). Spatial statistics and geographical information systems in epidemiology and public health. Advances in Parasitology 47, 81127.
Simoonga, C., Kazembe, L. N., Kristensen, T. K., Olsen, A., Appleton, C. C., Mubita, P. and Mubila, L. (2008). The epidemiology and small-scale spatial heterogeneity of urinary schistosomiasis in Lusaka province, Zambia. Geospatial Health 3, 5767.
Steinmann, P., Keiser, J., Bos, R., Tanner, M. and Utzinger, J. (2006). Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infectious Diseases 6, 411425.
Stensgaard, A., Jorgensen, A., Kabatereine, N. B., Malone, J. B. and Kristensen, T. K. (2005). Modelling the distribution of Schistosoma mansoni and host snails in Uganda using satellite sensor data and geographical information systems. Parassitologia 47, 115125.
Stensgaard, A., Jorgensen, A., Kabatereine, N. B., Rahbek, C. and Kristensen, T. K. (2006). Modeling freshwater snail habitat suitability and areas of potential snail-borne disease transmission in Uganda. Geospatial Health 1, 93104.
Stensgaard, A. S., Saarnak, C. F. L., Utzinger, J., Vounatsou, P., Simoonga, C., Mushinge, G., , Rahbek, C., Møhlenberg, F. and Kristensen, T. K. (2009). Virtual globes and geospatial health: the potential of new tools in the management and control of vector-borne diseases. Geospatial Health 3, 127141.
Stothard, J. R., Kabatereine, N. B., Tukahebwa, E. M., Kazibwe, F., Mathieson, W., Webster, J. P. and Fenwick, A. (2005). Field evaluation of the Meade Readiview handheld microscope for diagnosis of intestinal schistosomiasis in Uganda school children. American Journal of Tropical Medicine and Hygiene 73, 949955.
Stothard, J. R., Mgeni, A. F., Khamis, S., Kristensen, T. K., Hubbard, S. J., Seto, E., Ramsan, M. and Rollinson, D. (2002). New insights into the transmission biology of urinary schistosomiasis in Zanzibar. Transactions of the Royal Society of Tropical Medicine and Hygiene 96, 470475.
Taylor, M., Coovadia, H. M., Kvalsvig, J. D., Jinabhai, C. C. and Reddy, P. (1999). Helminth control as an entry point for health-promoting schools in Kwa Zulu-Natal. South African Medical Journal 89, 891892.
Utzinger, J., Müller, I., Vounatsou, P., Singer, B. H., N'Goran, E. K. and Tanner, M. (2003). Random spatial distribution of Schistosoma mansoni and hookworm infections among schoolchildren within a single village. Journal of Parasitology 89, 686692.
Vounatsou, P., Raso, G., Tanner, M., N'Goran, E. K. and Utzinger, J. (2009). Bayesian geostatistical modelling for mapping schistosomiasis transmission. Parasitology 136, doi:10.1017/S003118200900599X
Walsh, J. F., Molyneux, D. H. and Birley, M. H. (1993). Deforestation: effects on vector-borne disease. Parasitology 106 (Suppl.), S5575.
WHO (2002). Prevention and control of schistosomiasis and soil-transmitted helminthiasis. First report of the joint WHO expert committees. WHO Technical Report Series 912, 157.
Yang, G. J., Vounatsou, P., Tanner, M., Zhou, X. N. and Utzinger, J. (2006). Remote sensing for predicting potential habitats of Oncomelania hupensis in Hongze, Baima and Gaoyou lakes in Jiangsu province, China. Geospatial Health 1, 8592.
Yang, G. J., Vounatsou, P., Zhou, X. N., Utzinger, J. and Tanner, M. (2005). A review of geographic information system and remote sensing with applications to the epidemiology and control of schistosomiasis in China. Acta Tropica 96, 117129.
Zhou, X. N., Yang, G. J., Yang, K., Wang, X. H., Hong, Q. B., Sun, L. P., Malone, J. B., Kristensen, T. K., Bergquist, N. R. and Utzinger, J. (2008). Potential impact of climate change on schistosomiasis transmission in China. American Journal of Tropical Medicine and Hygiene 78, 188194.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0031-1820
  • EISSN: 1469-8161
  • URL: /core/journals/parasitology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed