Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-20T09:21:52.786Z Has data issue: false hasContentIssue false

Simple dialkyl pyrazole-3,5-dicarboxylates show in vitro and in vivo activity against disease-causing trypanosomatids

Published online by Cambridge University Press:  03 April 2017

FELIPE REVIRIEGO
Affiliation:
Instituto de Química Médica, CSIC, c/Juan de la Cierva 3, 28006-Madrid, Spain
FRANCISCO OLMO
Affiliation:
Departamento de Parasitología, Instituto de Investigación Biosanitaria (ibs.GRANADA), Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
PILAR NAVARRO
Affiliation:
Instituto de Química Médica, CSIC, c/Juan de la Cierva 3, 28006-Madrid, Spain
CLOTILDE MARÍN
Affiliation:
Departamento de Parasitología, Instituto de Investigación Biosanitaria (ibs.GRANADA), Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
INMACULADA RAMÍREZ-MACÍAS
Affiliation:
Departamento de Parasitología, Instituto de Investigación Biosanitaria (ibs.GRANADA), Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
ENRIQUE GARCÍA-ESPAÑA
Affiliation:
Departamento de Química Inorgánica, Instituto de Ciencia Molecular, Universidad de Valencia, Edificio de Institutos de Paterna, c/Profesor José Beltrán 22, 46980-Paterna (Valencia), Spain
MARÍA TERESA ALBELDA
Affiliation:
Departamento de Química Inorgánica, Instituto de Ciencia Molecular, Universidad de Valencia, Edificio de Institutos de Paterna, c/Profesor José Beltrán 22, 46980-Paterna (Valencia), Spain
RAMÓN GUTIÉRREZ-SÁNCHEZ
Affiliation:
Departamento de Estadística, Facultad de Ciencias, Universidad de Granada, c/Severo Ochoa s/n, 18071-Granada, Spain
MANUEL SÁNCHEZ-MORENO*
Affiliation:
Departamento de Parasitología, Instituto de Investigación Biosanitaria (ibs.GRANADA), Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
VICENTE J. ARÁN*
Affiliation:
Instituto de Química Médica, CSIC, c/Juan de la Cierva 3, 28006-Madrid, Spain
*
*Corresponding authors: Instituto de Química Médica, CSIC, c/Juan de la Cierva 3, 28006-Madrid, Spain. E-mail: vjaran@iqm.csic.es and Departamento de Parasitología, Instituto de Investigación Biosanitaria (ibs.GRANADA), Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain. E-mail: msanchem@ugr.es
*Corresponding authors: Instituto de Química Médica, CSIC, c/Juan de la Cierva 3, 28006-Madrid, Spain. E-mail: vjaran@iqm.csic.es and Departamento de Parasitología, Instituto de Investigación Biosanitaria (ibs.GRANADA), Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain. E-mail: msanchem@ugr.es

Summary

The synthesis and antiprotozoal activity of some simple dialkyl pyrazole-3,5-dicarboxylates (compounds 2–6) and their sodium salts (pyrazolates) (compounds 7–9) against Trypanosoma cruzi, Leishmania infantum and Leishmania braziliensis are reported. In most cases the studied compounds showed, especially against the clinically significant amastigote forms, in vitro activities higher than those of the reference drugs (benznidazole for T. cruzi and glucantime for Leishmania spp.); furthermore, the low non-specific cytotoxicities against Vero cells and macrophages shown by these compounds led to good selectivity indexes, which are 8–72 times higher for T. cruzi amastigotes and 15–113 times higher for Leishmania spp. amastigotes than those of the respective reference drugs. The high efficiency of diethyl ester 3 and its sodium salt 8 against the mentioned protozoa was confirmed by further in vitro assays on infection rates and by an additional in vivo study in a murine model of acute and chronic Chagas disease. The inhibitory capacity of compounds 3 and 8 on the essential iron superoxide dismutase of the aforementioned parasites may be related to the observed anti-trypanosomatid activity. The low acute toxicity of compounds 3 and 8 in mice is also reported in this article.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally to this work.

Present address: Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, London, UK.

§

Present address: Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.

Present address: GIBI 230, Instituto de Investigación Sanitaria y Hospital Universitario y Politécnico La Fe, Valencia, Spain.

References

REFERENCES

Askew, B. C., Bednar, R. A., Bednar, B., Claremon, D. A., Cook, J. J., McIntyre, C. J., Hunt, C. A., Gould, R. J., Lynch, R. J., Lynch, J. J. Jr., Gaul, S. L., Stranieri, M. T., Sitko, G. R., Holahan, M. A., Glass, J. D., Hamill, T., Gorham, L. M., Prueksaritanont, T., Baldwin, J. J. and Hartman, G. D. (1997). Non-peptide glycoprotein IIb/IIIa inhibitors. 17. Design and synthesis of orally active, long-acting non-peptide fibrinogen receptor antagonists. Journal of Medicinal Chemistry 40, 17791788.Google Scholar
Bermudez, J., Davies, C., Simonazzi, A., Real, J. P. and Palma, S. (2016). Current drug therapy and pharmaceutical challenges for Chagas disease. Acta Tropica 156, 116.CrossRefGoogle ScholarPubMed
Berneman, A., Montout, L., Goyard, S., Chamond, N., Cosson, A., d'Archivio, S., Gouault, N., Uriac, P., Blondel, A. and Minoprio, P. (2013). Combined approaches for drug design points the way to novel proline racemase inhibitor candidates to fight Chagas’ disease. PLoS ONE 8, e60955.Google Scholar
Beyer, W. F. Jr. and Fridovich, I. (1987). Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry 161, 559566.Google Scholar
Cavalli, A. and Bolognesi, M. L. (2009). Neglected Tropical Diseases: multi-target-directed ligands in the search for novel lead candidates against Trypanosoma and Leishmania . Journal of Medicinal Chemistry 52, 73397359.Google Scholar
Cencig, S., Coltel, N., Truyens, C. and Carlier, Y. (2011). Parasitic loads in tissues of mice infected with Trypanosoma cruzi and treated with AmBisome. PLoS Neglected Tropical Diseases 5, e1216.Google Scholar
Cerecetto, H. and González, M. (2010). Synthetic medicinal chemistry in Chagas’ disease: compounds at the final stage of “hit-to-lead” phase. Pharmaceuticals 3, 810838.CrossRefGoogle ScholarPubMed
Dujardin, J.-C., González-Pacanowska, D., Croft, S. L., Olesen, O. F. and Späth, G. F. (2010). Collaborative actions in anti-trypanosomatid chemotherapy with partners from disease endemic areas. Trends in Parasitology 26, 395403.CrossRefGoogle ScholarPubMed
Escartí, F., Miranda, C., Lamarque, L., Latorre, J., García-España, E., Kumar, M., Arán, V. J. and Navarro, P. (2002). Cu2+-induced formation of cage-like compounds containing pyrazole macrocycles. Journal of the Chemical Society, Chemical Communications 936937.Google Scholar
Espuelas, S., Plano, D., Nguewa, P., Font, M., Palop, J. A., Irache, J. M. and Sanmartín, C. (2012). Innovative lead compounds and formulation strategies as newer kinetoplastid therapies. Current Medicinal Chemistry 19, 42594288.Google Scholar
Fonseca-Berzal, C., Ibáñez-Escribano, A., Reviriego, F., Cumella, J., Morales, P., Jagerovic, N., Nogal-Ruiz, J. J., Escario, J. A., da Silva, P. B., Soeiro, M. N. C., Gómez-Barrio, A., Arán, V. J. (2016). Antichagasic and trichomonacidal activity of 1-substituted 2-benzyl-5-nitroindazolin-3-ones and 3-alkoxy-2-benzyl-5-nitro-2H-indazoles. European Journal of Medicinal Chemistry 115, 295310.Google Scholar
González, P., Marín, C., Rodríguez-González, I., Hitos, A. B., Rosales, M. J., Reina, M., Díaz, J. G., González-Coloma, A. and Sánchez-Moreno, M. (2005). In vitro activity of C20-diterpenoid alkaloid derivatives in promastigotes and intracellular amastigotes of Leishmania infantum . International Journal of Antimicrobial Agents 25, 136141.Google Scholar
Guedes, P. M. M., Silva, G. K., Gutierrez, F. R. S. and Silva, J. S. (2011). Current status of Chagas disease chemotherapy. Expert Review of Anti-infective Therapy 9, 609620.Google Scholar
Lamarque, L., Navarro, P., Miranda, C., Arán, V. J., Ochoa, C., Escartí, F., García-España, E., Latorre, J., Luis, S. V. and Miravet, F. (2001). Dopamine interaction in the absence and in the presence of Cu2+ ions with macrocyclic and macrobicyclic polyamines containing pyrazole units. Crystal structures of [Cu2(L1)(H2O)2](ClO4)4 and [Cu2(H−1L3)](ClO4)3·2H2O. Journal of the American Chemical Society 123, 1056010570.Google Scholar
Longoni, S. S., Marín, C., Sauri-Arceo, C. H., López-Cespedes, A., Rodríguez-Vivas, R. I., Villegas, N., Escobedo-Ortegón, J., Barrera-Pérez, M. A., Bolio-Gonzalez, M. E. and Sánchez-Moreno, M. (2011). An iron-superoxide dismutase antigen-based serological screening of dogs indicates their potential role in the transmission of cutaneous leishmaniasis and trypanosomiasis in Yucatan, Mexico. Vector-Borne and Zoonotic Diseases 11, 815821.Google Scholar
Marín, C., Ramírez-Macías, I., López-Céspedes, A., Olmo, F., Villegas, N., Díaz, J. G., Rosales, M. J., Gutiérrez-Sánchez, R. and Sánchez-Moreno, M. (2011). In vitro and in vivo trypanocidal activity of flavonoids from Delphinium staphisagria against Chagas disease. Journal of Natural Products 74, 744750.CrossRefGoogle ScholarPubMed
Marín, C., Clares, M. P., Ramírez-Macías, I., Blasco, S., Olmo, F., Soriano, C., Verdejo, B., Rosales, M. J., Gomez-Herrera, D., García-España, E. and Sánchez-Moreno, M. (2013). In vitro activity of scorpiand-like azamacrocycle derivative in promastigotes and intracellular amastigotes of Leishmania infantum and Leishmania braziliensis . European Journal of Medicinal Chemistry 62, 466477.Google Scholar
Miranda, C., Escartí, F., Lamarque, L., García-España, E., Navarro, P., Latorre, J., Lloret, F., Jiménez, H. R. and Yunta, M. J. R. (2005). CuII and ZnII coordination chemistry of pyrazole-containing polyamine receptors – influence of the hydrocarbon side chain length on the metal coordination. European Journal of Inorganic Chemistry 2005, 189208.CrossRefGoogle Scholar
Mishra, J., Saxena, A. and Singh, S. (2007). Chemotherapy of leishmaniasis: past, present and future. Current Medicinal Chemistry 14, 11531169.Google Scholar
Navarro, P., Sánchez-Moreno, M., Marín, C., García-España, E., Ramírez-Macías, I., Olmo, F., Rosales, M. J., Gómez-Contreras, F., Yunta, M. J. R., Gutiérrez-Sánchez, R. (2014). In vitro leishmanicidal activity of pyrazole-containing polyamine macrocycles which inhibit the Fe-SOD enzyme of Leishmania infantum and Leishmania braziliensis species. Parasitology 141, 10311043.Google Scholar
Olmo, F., Clares, M. P., Marín, C., González, J., Inclán, M., Soriano, C., Urbanová, K., Tejero, R., Rosales, M. J., Krauth-Siegel, R. L., Sánchez-Moreno, M. and García-España, E. (2014 a). Synthetic single and double aza-scorpiand macrocycles acting as inhibitors of the antioxidant enzymes iron superoxide dismutase and trypanothione reductase in Trypanosoma cruzi with promising results in a murine model. RSC Advances 4, 6510865120 (Electronic supplementary information: http://www.rsc.org/suppdata/ra/c4/c4ra09866h/c4ra09866h1.pdf).Google Scholar
Olmo, F., Escobedo-Ortegón, J., Palma, P., Sánchez-Moreno, M., Mejía-Jaramillo, A., Triana, O. and Marín, C. (2014 b). Specific primers design based on the superoxide dismutase b gene for Trypanosoma cruzi as a screening tool: validation method using strains from Colombia classified according to their discrete typing unit. Asian Pacific Journal of Tropical Medicine 7, 854859.Google Scholar
Olmo, F., Rotger, C., Ramírez-Macías, I., Martínez, L., Marín, C., Carreras, L., Urbanová, K., Vega, M., Chaves-Lemaur, G., Sampedro, A., Rosales, M. J., Sánchez-Moreno, M. and Costa, A. (2014 c). Synthesis and biological evaluation of N,N′ -squaramides with high in vivo efficacy and low toxicity: toward a low-cost drug against Chagas disease. Journal of Medicinal Chemistry 57, 987999.Google Scholar
Olmo, F., Guardia, J. J., Marín, C., Messouri, I., Rosales, M. J., Urbanová, K., Chayboun, I., Chahboun, R., Alvarez-Manzaneda, E. J. and Sánchez-Moreno, M. (2015). Prospects of an alternative treatment against Trypanosoma cruzi based on abietic acid derivatives show promising results in Balb/c mouse model. European Journal of Medicinal Chemistry 89, 683690.Google Scholar
Rajasekaran, R. and Chen, Y.-P. P. (2015). Potential therapeutic targets and the role of technology in developing novel antileishmanial drugs. Drug Discovery Today 20, 958968.Google Scholar
Ramírez-Macías, I., Marín, C., Es-Samti, H., Fernández, A., Guardia, J. J., Zentar, H., Agil, A., Chahboun, R., Alvarez-Manzaneda, E. and Sánchez-Moreno, M. (2012). Taiwaniaquinoid and abietane quinone derivatives with trypanocidal activity against T. cruzi and Leishmania spp. Parasitology International 61, 405413.Google Scholar
Reviriego, F., Rodríguez-Franco, M. I., Navarro, P., García-España, E., Liu-González, M., Verdejo, B. and Domènech, A. (2006). The sodium salt of diethyl 1H-pyrazole-3,5-dicarboxylate as an efficient amphiphilic receptor for dopamine and amphetamines. Crystal structure and solution studies. Journal of the American Chemical Society 128, 1645816459.Google Scholar
Sánchez-Moreno, M., Sanz, A. M., Gómez-Contreras, F., Navarro, P., Marín, C., Ramírez-Macias, I., Rosales, M. J., Olmo, F., Garcia-Aranda, I., Campayo, L., Cano, C., Arrebola, F. and Yunta, M. J. R. (2011). In vivo trypanosomicidal activity of imidazole- or pyrazole-based benzo[g]phthalazine derivatives against acute and chronic phases of Chagas disease. Journal of Medicinal Chemistry 54, 970979.Google Scholar
Sánchez-Moreno, M., Gómez-Contreras, F., Navarro, P., Marín, C., Olmo, F., Yunta, M. J. R., Sanz, A. M., Rosales, M. J., Cano, C. and Campayo, L. (2012 a). Phthalazine derivatives containing imidazole rings behave as Fe-SOD inhibitors and show remarkable anti-T. cruzi activity in immunodeficient-mouse model of infection. Journal of Medicinal Chemistry 55, 99009913.Google Scholar
Sánchez-Moreno, M., Gómez-Contreras, F., Navarro, P., Marín, C., Ramírez-Macías, I., Olmo, F., Sanz, A. M., Campayo, L., Cano, C. and Yunta, M. J. R. (2012 b). In vitro leishmanicidal activity of imidazole- or pyrazole-based benzo[g]phthalazine derivatives against Leishmania infantum and Leishmania braziliensis species. Journal of Antimicrobial Chemotherapy 67, 387397.Google Scholar
Sánchez-Moreno, M., Marín, C., Navarro, P., Lamarque, L., García-España, E., Miranda, C., Huertas, O., Olmo, F., Gómez-Contreras, F., Pitarch, J. and Arrebola, F. (2012 c). In vitro and in vivo trypanosomicidal activity of pyrazole-containing macrocyclic and macrobicyclic polyamines: their action on acute and chronic phases of Chagas disease. Journal of Medicinal Chemistry 55, 42314243.Google Scholar
Sánchez-Sancho, F., Campillo, N. E. and Páez, J. A. (2010). Chagas disease: progress and new perspectives. Current Medicinal Chemistry 17, 423452.Google Scholar
Santos, D. O., Coutinho, C. E. R., Madeira, M. F., Bottino, C. G., Vieira, R. T., Nascimento, S. B., Bernardino, A., Bourguignon, S. C., Corte-Real, S., Pinho, R. T., Rodrigues, C. R. and Castro, H. C. (2008). Leishmaniasis treatment – a challenge that remains: a review. Parasitology Research 103, 110.Google Scholar
Schenck, T. G., Downes, J. M., Milne, C. R. C., Mackenzie, P. B., Boucher, H., Whelan, J. and Bosnich, B. (1985). Bimetallic reactivity. Synthesis of bimetallic complexes containing a bis(phosphino)pyrazole ligand. Inorganic Chemistry 24, 23342337.Google Scholar
Sharma, M. K., Arán, V. J., Navarro, P., Ramos-Gallardo, A. and Vegas, A. (1994). Dinuclear Cu(II) complexes with two pyrazolate bridging groups formed from 26 membered oxaimine and polyamine macrocycles of 3,5-disubstituted 1H-pyrazole. Tetrahedron Letters 35, 57235726.Google Scholar
Singh, N., Kumar, M. and Singh, R. K. (2012). Leishmaniasis: current status of available drugs and new potential drug targets. Asian Pacific Journal of Tropical Medicine 5, 485497.Google Scholar
Soeiro, M. N. C. and de Castro, S. L. (2009). Trypanosoma cruzi targets for new chemotherapeutic approaches. Expert Opinion on Therapeutic Targets 13, 105121.Google Scholar
Téllez-Meneses, J., Mejía-Jaramillo, A. M. and Triana-Chávez, O. (2008). Biological characterization of Trypanosoma cruzi stocks from domestic and sylvatic vectors in Sierra Nevada of Santa Marta, Colombia. Acta Tropica 108, 2634.Google Scholar
Urbina, J. A. (2010). Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches. Acta Tropica 115, 5568.Google Scholar
WHO (World Health Organization) (2015). Investing to Overcome the Global Impact of Neglected Tropical Diseases. Third WHO report on neglected tropical diseases, Geneva, Switzerland.Google Scholar
Supplementary material: File

Reviriego supplementary material

Reviriego supplementary material

Download Reviriego supplementary material(File)
File 41.1 KB