Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T13:01:40.038Z Has data issue: false hasContentIssue false

The skin migratory stage of the schistosomulum of Schistosoma mansoni has a surface showing greater permeability and activity in membrane internalisation than other forms of skin or mechanical schistosomula

Published online by Cambridge University Press:  01 June 2015

WANDER DE JESUS JEREMIAS
Affiliation:
Laboratory of schistosomiasis, Rene Rachou, Fiocuz, 1715 Augusto de Lima, Belo Horizonte, 30190-002 MG, Brazil
JOSE RENAN DA CUNHA MELO
Affiliation:
Depatarmento de Cirurgia, Faculdade de Medicina UFMG, Belo Horizonte, MG, Brazil
ELIO HIDEO BABA
Affiliation:
Laboratory of schistosomiasis, Rene Rachou, Fiocuz, 1715 Augusto de Lima, Belo Horizonte, 30190-002 MG, Brazil
PAULO MARCOS ZECH COELHO
Affiliation:
Laboratory of schistosomiasis, Rene Rachou, Fiocuz, 1715 Augusto de Lima, Belo Horizonte, 30190-002 MG, Brazil
JOHN ROBERT KUSEL*
Affiliation:
Centre for Open Studies, Glasgow University, Glasgow, UK
*
*Corresponding author. Centre for Open Studies, Glasgow University, Glasgow, UK. E-mail: john.kusel@glasgow.ac.uk

Summary

Skin schistosomula can be prepared by collecting them after isolated mouse skin have been penetrated by cercariae in vitro. The schistosomula can also migrate out of isolated mouse skin penetrated by cercariae in vitro and from mouse skin penetrated by cercariae in vivo. Schistosomula can also be produced from cercariae applied through a syringe or in a vortex. When certain surface properties of the different forms of schistosomula were compared, those migrating from mouse skin penetrated by cercariae in vivo or in vitro had greatly increased permeability to membrane impermeant molecules such as Lucifer yellow and high molecular weight dextrans. These migrating forms also possessed surfaces which showed greatly enhanced uptake into internal membrane vesicles of the dye FM 143, a marker for endocytosis. This greatly enhanced activity and permeability of the surfaces of tissue migrating schistosomula is likely to be of great importance in the adaptation to the new host.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Al-Adhami, B. H., Noble, C., Sharaf, O., Thornhill, J., Doenhoff, M. J. and Kusel, J. R. (2005). The role of acidic organelles in the development of schistosomula of Schistosoma mansoni and their response to signalling molecules. Parasitology 130, 309322.Google Scholar
Barbosa, M. A., Pellegrino, J., Coelho, P. M. Z. and Sampaio, I. B. M. (1978). Quantitative aspects of the migration and evolutive asynchronism of Schistosoma mansoni in mice. Revista do Instituto de Medicina Tropical de Sao Paulo 20, 121132.Google Scholar
Brink, L. H., McLaren, D. J. and Smithers, S. R. (1977). Schistosoma mansoni: a comparative study of artificially transformed schistosomula and schistosomula recovered after cercarial penetration of isolated skin. Parasitology 74, 7386.Google Scholar
Clegg, J. A. (1965). In vitro cultivation of Schistosoma mansoni . Experimental Parasitology 16, 133147.Google Scholar
Colley, D. G. and Wikel, S. K. (1974). Schistosoma mansoni: a simplified method for production of schistosomules. Experimental Parasitology 35, 4456.Google Scholar
Crabtree, J. E. and Wilson, R. A. (1985). Schistosoma mansoni: an ultrastructural examination of skin migration in the hamster cheek pouch. Parasitology 91, 111128.Google Scholar
Curwen, R. S., Ashton, P. D., Sundaralingam, S. and Wilson, R. A. (2006). Identification of novel proteases and immunomodulators of secretions of schistosome cercariae that facilitate host entry. Molecular and Cell Proteomics 5, 835844.Google Scholar
El Ridi, R. and Tallima, H. (2006). Equilibrium in lung stage schistosomula sphingomyelin synthesis and breakdown allows very small molecules but not antibody to access proteins at the surface of the host–parasite interface. Journal of Parasitology 92, 730737.Google Scholar
Fonseca, C. T., Carvalho, G. B. F., Alves, C. C. and deMelo, T. T. (2012). Schistosoma tegument proteins in vaccine and diagnosis development: an update (2012). Journal of Parasitology Research 2012, Article ID 541268, 8 http://dx.doi.org/10.1155/2012/541268 Google Scholar
Ganley Leal, L. L., Guarner, J., Todd, C. W., Da'Dara, A. A., Freeman, G. L., Boyer, A. E., Harn, D. A. and Secor, W. E. (2005). Comparison of Schistosoma mansoni irradiated cercariae and Sm23 DNA vaccines. Parasite Immunology 27, 341349.CrossRefGoogle ScholarPubMed
Haas, W. (1984). Schistosoma mansoni: Cercaricidal effect of 2-tetradecenoic acid, a penetration stimulant. Experimental Parasitology 58, 215222.Google Scholar
Haeberlein, S. and Haas, W. (2008). Chemical attractants of human skin for swimming Schistosoma mansoni cercariae. Parasitology Research 102, 657662.Google Scholar
Heinrichs, S. (1985). Differential retrograde labelling with horseradish peroxidase (HRP) and Lucifer yellow (LY) in an invertebrate nervous system – HRP fluorescence and LY preservation limit choice of fixative. Journal of Neuroscience Methods 15, 8593.Google Scholar
Hockley, D. J. and McLaren, D. J. (1973). Schistosoma mansoni: changes in the outer membrane of the tegument during development from cercaria to adult worm. International Journal of Parasitology 3, 1325.Google Scholar
Kumkate, S, Jenkins, G. R., Paveley, R. A., Hogg, K. G. and Mountfor, A. P. (2007). CD207+ Langerhans cells constitute a minor population of skin-derived antigen-presenting cells in the draining lymph node following exposure to Schistosoma mansoni . International Journal of Parasitology 37, 209220.Google Scholar
Parker-Manuel, S. J., Ivens, A. C., Dillon, G. P. and Wilson, R. A. (2011). Gene expression patterns in larval Schistosoma mansoni associated with infection of the mammalian host. Plos Neglected Tropical Diseases 5, e1274.Google Scholar
Paveley, R. A., Aynsley, S. A., Cook, P. C., Turner, J. D. and Mountford, A. P. (2009). Fluorescent imaging of antigen released by a skin-invading helminth reveals differential uptake and activation profiles by antigen presenting cells. PLoS Neglected Tropical Diseases 3, e528.Google Scholar
Pearce, E. J., Basch, P. F. and Sher, A. (1986). Evidence that the reduced surface antigenicity of developing Schistosoma mansoni schistosomula is due to antigen shedding rather than host molecule acquisition. Parasite Immunology 8, 7994.Google Scholar
Peracchia, C. (1981). Direct communication between axons and sheath glial cells in crayfish. Nature 290, 597598.Google Scholar
Poot, M., Gibson, L. L. and Singer, V. L. (1997). Detection of apoptosis in live cells by MitoTracker red CMXRos and SYTO dye flow cytometry. Cytometry 27, 358364.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Protasio, A., Dunne, D. and Berriman, M. (2013). Comparative studies of transcriptome profiles of in vitro (mechanical) transformed and skin schistosomula. PLoS Neglected Tropical Diseases 7, e2091.Google Scholar
Ramalho-Pinto, F. J., Gazzinelli, G., Howells, R. E., Mota-Santos, T. A., Figueiredo, E. A. and Pellegrino, J. (1974). Schistosoma mansoni: defined system for stepwise transformation of cercaria to schistosomule in vitro . Experimental Parasitology 36, 360372.CrossRefGoogle ScholarPubMed
Ribeiro, F., Coelho, P. M., Vieira, L. Q., Powell, K. and Kusel, J. R. (1998 a). Membrane internalization processes in different stages of Schistosoma mansoni as shown by a styryl dye (Frei Mao 1–43). Parasitology 116, 5159.Google Scholar
Ribeiro, F., Coelho, P. M. Z., Vieira, L. Q., Watson, D. G. and Kusel, J. R. (1998 b). The effect of praziquantel treatment on glutathione concentration in Schistosoma mansoni . Parasitology 116(Pt3), 229236.Google Scholar
Shimizu, N. and Kawazoe, Y. (1996). A new method for permeabilization of the plasma membrane of cultured mammalian cells. III. Internalization of fluorescent dextrans into cultured mammalian cells by vortex-stirring in the presence of high molecular weight polyacrylic acid. Biological and Pharmacological Bulletin 19, 10231025.Google Scholar
Stirewalt, M. A. (1974). Schistosoma mansoni: cercaria to schistosomule. Advances in Parasitology 12, 115182.Google Scholar
Thornhill, J. A., McVeigh, P. A., Jurberg, A. D. and Kusel, J. R. (2010). Pathways of influx of molecules into cercariae of Schistosoma mansoni during skin penetration . Parasitology 137, 10891109.Google Scholar
Walker, A. J., Ressurreição, M. and Rothermel, R. (2014). Exploring the function of protein kinases in schistosomes: perspectives from the laboratory and from comparative genomics. Frontiers in Genetics 5, 229.CrossRefGoogle ScholarPubMed
Wolowczuk, I., Nutten, S., Roye, O., Delacre, M., Capron, M., Murray, R. M., Trottein, F. and Auriault, C. (1999). Infection of mice lacking interleukin-7 (IL-7) reveals an unexpected role for IL-7in the development of the parasite. Schistosoma Mansoni Infection and Immunity 67, 41834190.CrossRefGoogle ScholarPubMed