Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T07:59:18.141Z Has data issue: false hasContentIssue false

Summer time predation on the obligatory off-host stage of an invasive ectoparasite

Published online by Cambridge University Press:  06 October 2016

SIRPA KAUNISTO*
Affiliation:
Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
ILKKA RAUNISMAA
Affiliation:
Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
RAINE KORTET
Affiliation:
Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
HANNU YLÖNEN
Affiliation:
Department of Biological and Environmental Science, University of Jyväskylä, Konnevesi Research Station, P.O. Box 35, FI-40014 Jyväskylä, Finland
*
*Corresponding author. Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland. E-mail: sirpa.kaunisto@uef.fi

Summary

Predation can regulate populations and strongly affect invasion success of novel prey. The deer ked (Lipoptena cervi; Linnaeus 1758) is an invasive ectoparasite of cervids that spends a long period of its life cycle outside the host. Prior to this study, virtually nothing was known about natural summer time predation on the deer ked. We aimed to evaluate the magnitude of summer time predation on L. cervi pupae in different habitats and to identify potential predators. We conducted a set of field experiments, where we exposed L. cervi pupae to various ground-dwelling vertebrate and invertebrate predators. The loss of pupae was monitored for different predator guilds. Three habitats of the moose, the main host species, were studied: (1) moist heath forest; (2) dry, logged heath forest; and (3) moist meadow. The results indicate notable summer time predation on L. cervi pupae, and the pupal predation varied within and between habitats, being lowest in the meadow habitat. We found a positive correlation between pupal loss and abundance of the common lizard (Zootoca vivipara), harvestmen (Opiliones), ground spiders (Gnaphosidae) and Formicinae-ants. We conclude that summer time predation during the pupal phase can have a notable local importance for the L. cervi abundance.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barber, N. A., Marquis, R. J. and Tori, W. P. (2008). Invasive prey impacts the abundance and distribution of native predators. Ecology 89, 26782683.CrossRefGoogle ScholarPubMed
Begon, M., Townsend, C. R. and Harper, J. L. (2006). Ecology: From Individuals to Ecosystems. Ecological Applications. Wiley-Blackwell, Oxford, UK.Google Scholar
Bourke, A. F. G. and Franks, N. R. (1995). Social Evolution in Ants. Princeton University Press, Princeton, New Jersey, USA.Google Scholar
Bradley, R. A. (2013). Common Spiders of North America, Illustrated by Steve Buchanan. University of California Press, London, UK.Google Scholar
Brookes, M. H., Stark, R. W. and Campbell, R. W. (1979). The Douglas-Fir Tussock Moth: A Synthesis. USGPO, Washington, DC, USA.Google Scholar
Carlsson, N. O. L., Sarnelle, O. and Strayer, D. L. (2009). Native predators and exotic prey – an acquired taste? Frontiers in Ecology and the Environment 7, 525532.CrossRefGoogle Scholar
Ghoneim, K. (2014). Predatory insects and arachnids as potential biological control agents against the invasive tomato leafminer, Tuta absoluta Meyrick (Lepidoptera: Gelechiidae), in perspective and prospective. Journal of Entomology and Zoology Studies 2, 5271.Google Scholar
Grimaldi, D. and Engel, M. S. (2005). Evolution of the Insects. Cambridge University Press, New York, USA.Google Scholar
Haarløv, N. (1964). Life cycle and distribution pattern of Lipoptena cervi (L.) (Dipt., Hippobosc.) on Danish deer. Oikos 15, 93129.CrossRefGoogle Scholar
Hackman, W., Rantanen, T. and Vuojolahti, P. (1983). Immigration of Lipoptena cervi (Diptera, Hippoboscidae) in Finland, with notes on its biology and medical significance. Notulae Entomologicae 63, 5359.Google Scholar
Härkönen, L. and Kaitala, A. (2013). Months of asynchrony in offspring production but synchronous adult emergence: the role of diapause in an ectoparasite's life cycle. Environmental Entomology 42, 14081414.CrossRefGoogle Scholar
Härkönen, L., Kaitala, A., Kaunisto, S. and Repo, T. (2012). High cold tolerance through four seasons and all free-living stages in an ectoparasite. Parasitology 139, 926933.CrossRefGoogle Scholar
Harrison, S. and Wilcox, C. (1995). Evidence that predator satiation may restrict the spatial spread of a tussock moth (Orgyia vetusta) outbreak. Oecologia 101, 309316.CrossRefGoogle ScholarPubMed
Herrel, A., Van Damme, R., Vanhooydonck, B. and De Vree, F. (2001). The implications of bite performance for diet in two species of lacertid lizards. Canadian Journal of Zoology 79, 662670.CrossRefGoogle Scholar
Hvam, A. and Toft, S. (2008). Prey preference and consumption by some non-specialist harvestman species (Arachnida: Opiliones). Bulletin of the British Arachnological Society 14, 198205.Google Scholar
Jacob, J., Ylönen, H., Perry, J. A. and Singleton, G. R. (2002). Who eats first? Uptake of pellet bait by target and non-target species. International Journal of Biodeterioration and Biodegradation 49, 121124.CrossRefGoogle Scholar
Johnson, P. T. J., Dobson, A., Lafferty, K. D., Marcogliese, D. J., Memmott, J., Orlofske, S. A., Poulin, R. and Thieltges, D. W. (2010). When parasites become prey: ecological and epidemiological significance of eating parasites. Trends in Ecology and Evolution 25, 362371.CrossRefGoogle ScholarPubMed
Itämies, J. and Koskela, P. (1971). Diet of the common lizard (Lacerta vivipara Jacq.). Aquilo Serie Zoologica 11, 3743.Google Scholar
Kaunisto, S., Kortet, R., Härkönen, L., Härkönen, S., Ylönen, H. and Laaksonen, S. (2009). New bedding site examination-based method to analyse deer ked (Lipoptena cervi) infection in cervids. Parasitology Research 104, 919925.CrossRefGoogle ScholarPubMed
Kaunisto, S., Kortet, R., Härkönen, S., Kaitala, A., Laaksonen, S. and Ylönen, H. (2012 a). Do small mammals prey upon an invasive ectoparasite of cervids? Canadian Journal of Zoology 90, 10441050.CrossRefGoogle Scholar
Kaunisto, S., Välimäki, P., Kortet, R., Koskimäki, J., Härkönen, S., Kaitala, A., Laaksonen, S., Härkönen, L. and Ylönen, H. (2012 b). Avian predation on a parasitic fly of cervids during winter: can host-related cues increase the predation risk? Biological Journal of the Linnean Society 106, 275286.CrossRefGoogle Scholar
Kaunisto, S., Härkönen, L., Rantala, M. J. and Kortet, R. (2015 a). Early life temperature modifies adult encapsulation response in an invasive ectoparasite. Parasitology 142, 12901296.CrossRefGoogle Scholar
Kaunisto, S., Ylönen, H. and Kortet, R. (2015 b). Passive sinking into the snow as possible survival strategy during the off-host stage in an insect ectoparasite. Folia Parasitologica 62, 038.CrossRefGoogle Scholar
Keane, R. M. and Crawley, M. J. (2002). Exotic plant invasions and the enemy release hypothesis. Trends in Ecology and Evolution 17, 164170.CrossRefGoogle Scholar
Konnevesi Wind Farm Oy (2013). Konneveden Silmutmäen tuulivoimapuiston pesimälinnusto- ja liito-oravaselvitys 2013. Ahlman Group Oy, Raportteja 22/2013, Finland.Google Scholar
Koponen, S. and Hietakangas, H. (1972). Food of the common lizard (Lacerta vivipara) on a peat bog in southwestern Finland. Annales Zoologici Fennici 9, 191192.Google Scholar
Korhonen, E., Vera, C. P., Pulliainen, A. T., Sironen, T., Aaltonen, K., Kortet, R., Härkönen, L., Härkönen, S., Paakkonen, T., Ylönen, H. and Vapalahti, O. (2015). Molecular detection of Bartonella spp. in deer ked pupae, adult keds and moose blood in Finland. Epidemiology and Infection 143, 578585.CrossRefGoogle ScholarPubMed
Kortet, R., Härkönen, L., Hokkanen, P., Härkönen, S., Kaitala, A., Kaunisto, S., Laaksonen, S., Kekäläinen, J. and Ylönen, H. (2010). Experiments on the ectoparasitic deer ked that often attacks humans; preferences for body parts, colour and temperature. Bulletin of Entomological Research 100, 279285.CrossRefGoogle ScholarPubMed
Koss, A. M. and Snyder, W. E. (2005). Alternative prey disrupt biocontrol by a guild of generalist predators. Biological Control 32, 243251.CrossRefGoogle Scholar
Kotiaho, J. S. and Sulkava, P. (2007). Effects of isolation, area and predators on invasion: a field experiment with artificial islands. Applied Soil Ecology 35, 256259.CrossRefGoogle Scholar
Krasnov, B. R., Poulin, R., Shenbrot, G. I., Mouillot, D. and Khokhlova, I. S. (2005). Host specificity and geographic range in haematophagous ectoparasites. Oikos 108, 449456.CrossRefGoogle Scholar
Krasnov, B. R., Mouillot, D., Shenbrot, G. I., Khokhlova, I. S., Vinarski, M. V., Korallo-Vinarskaya, N. P. and Poulin, R. (2010). Similarity in ectoparasite faunas of Palaearctic rodents as a function of host phylogenetic, geographic or environmental distances: which matters the most? International Journal for Parasitology 40, 807817.CrossRefGoogle ScholarPubMed
Kynkäänniemi, S. M., Tikkakoski, M., Kortet, R., Härkönen, L., Kaitala, A., Paakkonen, T., Mustonen, A. M., Nieminen, P., Härkönen, S., Ylönen, H. and Laaksonen, S. (2014). Acute impacts of the deer ked (Lipoptena cervi) infestation on reindeer (Rangifer tarandus tarandus) behaviour. Parasitology Research 113, 14891497.CrossRefGoogle ScholarPubMed
Lafferty, K. D., Dobson, A. P. and Kuris, A. M. (2006). Parasites dominate food web links. Proceedings of the National Academy of Sciences of the United States of America 103, 1121111216.CrossRefGoogle ScholarPubMed
Lafferty, K. D., Allesina, S., Arim, M., Briggs, C. J., De Leo, G., Dobson, A. P., Dunne, J. A., Johnson, P. T. J., Kuris, A. M., Marcogliese, D. J., Martinez, N. D., Memmott, J., Marquet, P. A., McLaughlin, J. P., Mordecai, E. A., Pascual, M., Poulin, R. and Thieltges, D. W. (2008). Parasites in food webs: the ultimate missing links. Ecology Letters 11, 533546.CrossRefGoogle ScholarPubMed
Lodge, D. M. (1993). Biological invasions: lessons for ecology. Trends in Ecology and Evolution 8, 133137.CrossRefGoogle ScholarPubMed
Madslien, K., Ytrehus, B., Viljugrein, H., Solberg, E. J., Bråten, K. R. and Mysterud, A. (2012). Factors affecting deer ked (Lipoptena cervi) prevalence and infestation intensity in moose (Alces alces) in Norway. Parasites and Vectors 5, 251.CrossRefGoogle ScholarPubMed
Massei, G. and Genov, P. (1995). Observations of black-billed magpie (Pica pica) and carrion crow (Corvus corone comix) grooming wild boar (Sus scrofa). Journal of Zoology 236, 338341.CrossRefGoogle Scholar
Meier, C. M., Bonte, D., Kaitala, A. and Ovaskainen, O. (2014). Invasion rate of deer ked depends on spatiotemporal variation in host density. Bulletin of Entomological Research 104, 314322.CrossRefGoogle ScholarPubMed
Mize, E. L., Tsao, J. I. and Maurer, B. A. (2011). Habitat correlates with the spatial distribution of ectoparasites on Peromyscus leucopus in southern Michigan. Journal of Vector Ecology 36, 308320.CrossRefGoogle ScholarPubMed
Mwangi, E. N., Newson, R. M. and Kaaya, G. P. (1991). Predation of free-living engorged female Rhipicephalus appendiculatus . Experimental and Applied Acarology 12, 153162.CrossRefGoogle ScholarPubMed
Negm, A. A. and Hensley, S. D. (1967). The relationship of arthropod predators to crop damage inflicted by the sugarcane borer. Journal of Economic Entomology 60, 15031506.CrossRefGoogle Scholar
Peres, C. A. (1996). Ungulate ectoparasite removal by black caracaras and pale-winged trumpeters in Amazonian forests. Wilson Bulletin 108, 170175.Google Scholar
Rosenheim, J. A. (1990). Aerial prey caching by solitary ground-nesting wasps: a test of the predator defense hypothesis. Journal of Insect Behavior 3, 241250.CrossRefGoogle Scholar
Salo, P., Nordström, M., Thomson, R. L. and Korpimäki, E. (2008). Risk induced by a native top predator reduces alien mink movements. Journal of Animal Ecology 77, 10921098.CrossRefGoogle ScholarPubMed
Samish, M. and Rehacek, J. (1999). Pathogens and predators of ticks and their potential in biological control. Annual Review of Entomology 44, 159182.CrossRefGoogle ScholarPubMed
Samuel, W. M., Mooring, M. S. and Aalangdong, O. I. (2000). Adaptations of winter ticks (Dermacentor albipictus) to invade moose and moose to evade ticks. Alces 36, 183195.Google Scholar
Samuel, W. M., Madslien, K. and Gonynor-McGuire, J. (2012). Review of deer ked (Lipoptena cervi) on moose in Scandinavia with implications for North America. Alces 48, 2733.Google Scholar
Sazima, I. (2007). Unexpected cleaners: black vultures (Coragyps atratus) remove debris, ticks, and peck at sores of capybaras (Hydrochoerus hydrochaeris), with an overview of tick-removing birds in Brazil. Revista Brasileira de Ornitologia 15, 417426.Google Scholar
Schoener, T. W. and Spiller, D. A. (1995). Effect of predators and area on invasion: an experiment with island spiders. Science 267, 18111813.CrossRefGoogle ScholarPubMed
Schönrogge, K., Begg, T. and Stone, G. N. (2013). Native birds and alien insects: spatial density dependence in songbird predation of invading oak gallwasps. PLoS ONE 8, e53959.CrossRefGoogle ScholarPubMed
Shenbrot, G., Krasnov, B. and Lu, L. (2007). Geographical range size and host specificity in ectoparasites: a case study with Amphipsylla fleas and rodent hosts. Journal of Biogeography 34, 16791690.CrossRefGoogle Scholar
Shwartz, A., Strubbe, D., Butler, C. J., Matthysen, E. and Kark, S. (2009). The effect of enemy-release and climate conditions on invasive birds: a regional test using the rose-ringed parakeet (Psittacula krameri) as a case study. Diversity and Distributions 15, 310318.CrossRefGoogle Scholar
Sutherst, R. W., Wilson, L. J. and Cook, I. M. (2000). Predation of the cattle tick, Boophilus microplus (Canestrini) (Acarina: Ixodidae), in three Australian pastures. Australian Journal of Entomology 39, 7077.CrossRefGoogle Scholar
Tomasson, K., Tammaru, T. and Kurina, O. (2012). Harvestmen (Arachnida: Opiliones) in Estonia: results of the Estonian Malaise Trap Project. Entomologica Fennica 25, 142156.CrossRefGoogle Scholar
Tvardikova, K. and Novotny, V. (2012). Predation on exposed and leaf-rolling artificial caterpillars in tropical forests of Papua New Guinea. Journal of Tropical Ecology 28, 331341.CrossRefGoogle Scholar
Ubick, D. (2005). Gnaphosidae. In Spiders of North America: an Identification Manual (ed. Ubick, D., Paquin, P., Cushing, P. E. and Roth, V.), pp. 106111. American Arachnological Society, USA.Google Scholar
Urbaneja, A., Marí, F. G., Tortosa, D., Navarro, C., Vanaclocha, P., Bargues, L. and Castañera, P. (2006). Influence of ground predators on the survival of the Mediterranean fruit fly pupae, Ceratitis capitata, in Spanish citrus orchards. BioControl 51, 611626.CrossRefGoogle Scholar
Välimäki, P., Madslien, K., Malmsten, J., Härkönen, L., Härkönen, S., Kaitala, A., Kortet, R., Laaksonen, S., Mehl, R., Redford, L., Ylönen, H. and Ytrehus, B. (2010). Fennoscandian distribution of an important parasite of cervids, the deer ked (Lipoptena cervi), revisited. Parasitology Research 107, 117125.CrossRefGoogle ScholarPubMed
Välimäki, P., Kaitala, A., Madslien, K., Härkönen, L., Várkonyi, G., Heikkilä, J., Jaakola, M., Ylönen, H., Kortet, R. and Ytrehus, B. (2011). Geographical variation in host use of a blood-feeding ectoparasitic fly: implications for population invasiveness. Oecologia 166, 985995.CrossRefGoogle ScholarPubMed
Vermeij, G. J. (2005). Invasion as expectation: a historical fact of life. In Species Invasions: Insights Into Ecology, Evolution and Biogeography (ed. Sax, D. F., Stachowicz, J. J. and Gaines, S. D.), pp. 315339. Sinauer Associates Inc., Sunderland, USA.Google Scholar
Wilkinson, P. R. (1970). A preliminary note on predation on free-living engorged female Rocky Mountain wood ticks. Journal of Medical Entomology 7, 493496.CrossRefGoogle ScholarPubMed
Williamson, M. (1996). Biological Invasions. Chapman & Hall, London, UK.Google Scholar
Youngs, L. C. and Campbell, R. W. (1984). Ants preying on pupae of the western spruce budworm, Choristoneura occidentalis (Lepidoptera:Tortricidae), in eastern Oregon and western Montana. Canadian Entomologist 116, 16651669.CrossRefGoogle Scholar