Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 11
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Antwi, Enoch B. Haanstra, Jurgen R. Ramasamy, Gowthaman Jensen, Bryan Droll, Dorothea Rojas, Federico Minia, Igor Terrao, Monica Mercé, Clémentine Matthews, Keith Myler, Peter J. Parsons, Marilyn and Clayton, Christine 2016. Integrative analysis of the Trypanosoma brucei gene expression cascade predicts differential regulation of mRNA processing and unusual control of ribosomal protein expression. BMC Genomics, Vol. 17, Issue. 1,

    Hochstetter, Axel Stellamanns, Eric Deshpande, Siddharth Uppaluri, Sravanti Engstler, Markus and Pfohl, Thomas 2015. Microfluidics-based single cell analysis reveals drug-dependent motility changes in trypanosomes. Lab Chip, Vol. 15, Issue. 8, p. 1961.

    Kim, Dong-Hyun Achcar, Fiona Breitling, Rainer Burgess, Karl E. and Barrett, Michael P. 2015. LC–MS-based absolute metabolite quantification: application to metabolic flux measurement in trypanosomes. Metabolomics, Vol. 11, Issue. 6, p. 1721.

    Fadda, Abeer Ryten, Mark Droll, Dorothea Rojas, Federico Färber, Valentin Haanstra, Jurgen R. Merce, Clemetine Bakker, Barbara M. Matthews, Keith and Clayton, Christine 2014. Transcriptome-wide analysis of trypanosome mRNA decay reveals complex degradation kinetics and suggests a role for co-transcriptional degradation in determining mRNA levels. Molecular Microbiology, Vol. 94, Issue. 2, p. 307.

    Creek, Darren J. Vincent, Isabel M. and Barrett, Michael P. 2013. Trypanosomatid Diseases.

    Adamczyk, Malgorzata and Westerhoff, Hans V. 2012. Engineering of self-sustaining systems: Substituting the yeast glucose transporter plus hexokinase for the Lactococcus lactis phosphotransferase system in a Lactococcus lactis network in silico. Biotechnology Journal, Vol. 7, Issue. 7, p. 877.

    CHOI, J. and EL-SAYED, N. M. 2012. Functional genomics of trypanosomatids. Parasite Immunology, Vol. 34, Issue. 2-3, p. 72.

    Creek, Darren J. Anderson, Jana McConville, Malcolm J. and Barrett, Michael P. 2012. Metabolomic analysis of trypanosomatid protozoa. Molecular and Biochemical Parasitology, Vol. 181, Issue. 2, p. 73.

    Fleming, R.M.T. and Thiele, I. 2012. Mass conserved elementary kinetics is sufficient for the existence of a non-equilibrium steady state concentration. Journal of Theoretical Biology, Vol. 314, p. 173.

    Swat, M. Kielbasa, S. M. Polak, S. Olivier, B. Bruggeman, F. J. Tulloch, M. Q. Snoep, J. L. Verhoeven, A. J. and Westerhoff, H. V. 2011. What it takes to understand and cure a living system: computational systems biology and a systems biology-driven pharmacokinetics-pharmacodynamics platform. Interface Focus, Vol. 1, Issue. 1, p. 16.

    Barrett, Michael P 2010. Potential new drugs for human African trypanosomiasis: some progress at last. Current Opinion in Infectious Diseases, Vol. 23, Issue. 6, p. 603.


The silicon trypanosome

  • DOI:
  • Published online: 06 May 2010

African trypanosomes have emerged as promising unicellular model organisms for the next generation of systems biology. They offer unique advantages, due to their relative simplicity, the availability of all standard genomics techniques and a long history of quantitative research. Reproducible cultivation methods exist for morphologically and physiologically distinct life-cycle stages. The genome has been sequenced, and microarrays, RNA-interference and high-accuracy metabolomics are available. Furthermore, the availability of extensive kinetic data on all glycolytic enzymes has led to the early development of a complete, experiment-based dynamic model of an important biochemical pathway. Here we describe the achievements of trypanosome systems biology so far and outline the necessary steps towards the ambitious aim of creating a ‘Silicon Trypanosome’, a comprehensive, experiment-based, multi-scale mathematical model of trypanosome physiology. We expect that, in the long run, the quantitative modelling enabled by the Silicon Trypanosome will play a key role in selecting the most suitable targets for developing new anti-parasite drugs.

Corresponding author
*Corresponding author: B. M. Bakker, Tel: +31 (0) 50 361 1542. E-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

C. J. Bacchi , H. C. Nathan , S. H. Hutner , P. P. McCann and A. Sjoerdsma (1980). Polyamine metabolism: a potential therapeutic target in trypanosomes. Science 210, 332334.

B. M. Bakker , H. E. Aßmus , F. Bruggeman , J. Haanstra , E. Klipp and H. V. Westerhoff (2002). Network-based selectivity of antiparasitic inhibitors. Molecular Biology Reports 29, 15.

B. M. Bakker , P. A. M. Michels , F. R. Opperdoes and H. V. Westerhoff (1997). Glycolysis in bloodstream form Trypanosoma brucei can be understood in terms of the kinetics of the glycolytic enzymes. Journal of Biological Chemistry 272, 32073215.

B. M. Bakker , M. C. Walsh , B. H. ter Kuile , F. I. Mensonides , P. A. M. Michels , F. R. Opperdoes and H. V. Westerhoff (1999 b). Contribution of glucose transport to the control of the glycolytic flux in Trypanosoma brucei. Proceedings of the National Academy of Sciences, USA 96, 1009810103.

M. P. Barrett (1997). The pentose phosphate pathway and parasitic protozoa. Parasitology Today 13, 1116.

M. P. Barrett , R. J. Burchmore , A. Stich , J. O. Lazzari , A. C. Frasch , J. J. Cazzulo and S. Krishna (2003). The trypanosomiases. Lancet 362, 14691480.

M. Berriman , E. Ghedin , C. Hertz-Fowler , G. Blandin , H. Renauld (2005). The genome of the African trypanosome Trypanosoma brucei. Science 309, 416422.

B. Chukualim , N. Peters , C. Hertz-Fowler and M. Berriman (2008). TrypanoCyc – a metabolic pathway database for Trypanosoma brucei. BMC Bioinformatics 9 (Suppl 10), P5.

C. Clayton and M. Shapira (2007). Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Molecular and Biochemical Parasitology 156, 93–101.

P. Daran-Lapujade , S. Rossell , W. M. van Gulik , M. A. H. Luttik , M. J. L. de Groot , M. Slijper , A. J. R. Heck , J. M. Daran , J. H. de Winde , H. V. Westerhoff , J. T. Pronk and B. M. Bakker (2007). The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels. Proceedings of the National Academy of Sciences, USA 104, 1575315758.

A. H. Fairlamb and A. Cerami (1992). Metabolism and functions of trypanothione in the Kinetoplastida. Annual Review of Microbiology 46, 695729.

A. H. Fairlamb , G. B. Henderson , C. J. Bacchi and A. Cerami (1987). In vivo effects of difluoromethylornithine on trypanothione and polyamine levels in bloodstream forms of Trypanosoma brucei. Molecular and Biochemical Parasitology 24, 185191.

K. Fenn and K. R. Matthews (2007). The cell biology of Trypanosoma brucei differentiation. Current Opinion in Microbiology 10, 539546.

J. Grigull , S. Mnaimneh , J. Pootoolal , M. Robinson and T. Hughes (2004). Genome-wide analysis of mRNA stability using transcription inhibitors and microarrays reveals posttranscriptional control of ribosome biogenesis factors. Molecular and Cellular Biology 24, 55345547.

J. R. Haanstra , M. Stewart , V. D. Luu , A. van Tuijl , H. V. Westerhoff , C. Clayton and B. M. Bakker (2008 b). Control and regulation of gene expression: quantitative analysis of the expression of phosphoglycerate kinase in bloodstream form Trypanosoma brucei. Journal of Biological Chemistry 283, 24952507.

J. R. Haanstra , A. van Tuijl , P. Kessler , W. Reijnders , P. A. M. Michels , H. V. Westerhoff , M. Parsons and B. M. Bakker (2008 a). Compartmentation prevents a lethal turbo-explosion of glycolysis in trypanosomes. Proceedings of the National Academy of Sciences, USA 105, 1771817723.

N. Heise and F. R. Opperdoes (1999). Purification, localisation and characterisation of glucose-6-phosphate dehydrogenase of Trypanosoma brucei. Molecular and Biochemical Parasitology 99, 2132.

S. Helfert , B. M. Bakker , P. A. M. Michels and C. Clayton (2001). An essential role of triosephosphate isomerase and aerobic metabolism in trypanosomes. Biochemical Journal 357, 117125.

H. Hirumi and K. Hirumi (1989). Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. Journal of Parasitology 75, 985989.

F. Hynne , S. Danø and P. G. Sørensen (2001). Full-scale model of glycolysis in Saccharomyces cerevisiae. Biophysical Chemistry 94, 121163.

P. S. Kessler and M. Parsons (2005). Probing the role of compartmentation of glycolysis in procyclic form Trypanosoma brucei: RNA interference studies of PEX14, hexokinase and phosphofructokinase. Journal of Biological Chemistry 280, 90309036.

X. Liang , A. Haritan , S. Uliel and S. Michaeli (2003). Trans and cis splicing in trypanosomatids: mechanism, factors, and regulation. Eukaryotic Cell 2, 830840.

I. E. Nikerel , W. A. van Winden , W. M. van Gulik and J. J. Heijnen (2006). A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics. BMC Bioinformatics 7, 540.

F. R. Opperdoes and P. Borst (1977). Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: the glycosome. FEBS Letters 80, 360364.

A. Paterou , P. Walrad , P. Craddy , K. Fenn and K. Matthews (2006). Identification and stage-specific association with the translational apparatus of TbZFP3, a ccch protein that promotes trypanosome life cycle development. Journal of Biological Chemistry 281, 3900239013.

P. Richard , B. Teusink , M. B. Hemker , K. van Dam and H. V. Westerhoff (1996). Sustained oscillations in free-energy state and hexose phosphates in yeast. Yeast 12, 731740.

A. Rokka , V. D. Antonenkov , R. Soininen , H. L. Immonen , P. L. Pirilä , U. Bergmann , R. T. Sormunen , M. Weckström , R. Benz and J. K. Hiltunen (2009). Pxmp2 is a channel-forming protein in Mammalian peroxisomal membrane. PLoS One 4, e5090.

T. Siegel , D. Hekstra , L. Kemp , L. Figueiredo , J. Lowell , D. Fenyo , X. Wang , S. Dewell and G. Cross (2009). Four histone variants mark the boundaries of polycistronic transcription units in Trypanosoma brucei. Genes & Development 23, 10631076.

K. Smallbone , E. Simeonidis , D. S. Broomhead and D. B. Kell (2007). Something from nothing: bridging the gap between constraint-based and kinetic modelling. FEBS Journal 274, 55765585.

J. L. Snoep , F. Bruggeman , B. G. Olivier and H. V. Westerhoff (2006). Towards building the silicon cell: a modular approach. Biosystems 83, 207216.

M. Stern , S. Gupta , M. Salmon-Divon , T. Haham , O. Barda , S. Levi , C. Wachtel , T. Nilsen and S. Michaeli (2009). Multiple roles for polypyrimidine tract binding (PTB) proteins in trypanosome RNA metabolism. RNA 15, 648665.

H. V. Westerhoff , A. Kolodkin , R. Conradie , S. J. Wilkinson , F. J. Bruggeman , K. Krab , J. H. Van Schuppen , H. Hardin , B. M. Bakker , M. J. Moné , K. N. Rybakova , M. Eijken , H. J. Van Leeuwen and J. L. Snoep (2009). Sytems biology towards life in silico: mathematics of the control of living cells. Journal of Mathematical Biology 58, 7–34.

H. V. Westerhoff , J. G. Koster , M. Van Workum and K. E. Rudd (1990). On the control of gene expression. In Control of Metabolic Processes (ed. A. Cornish-Bowden and M.-L. Cardenas ), pp. 399412. Plenum Press, New York.

Y. Xiao , D. E. McCloskey and M. A. Phillips (2009). RNA interference-mediated silencing of ornithine decarboxylase and spermidine synthase genes in Trypanosoma brucei provides insight into regulation of polyamine biosynthesis. Eukaryotic Cell 8, 747755.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0031-1820
  • EISSN: 1469-8161
  • URL: /core/journals/parasitology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *