Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-15T16:53:39.427Z Has data issue: false hasContentIssue false

The Wellcome Trust Lecture: Mechanisms of molecular trafficking in malaria

Published online by Cambridge University Press:  23 August 2011

I. W. Sherman
Affiliation:
Department of Biology, University of California, Riverside, California USA, 92521

Summary

The asexual stages of Plasmodium living within the erythrocyte result in growth-related changes in the permeability properties of the red cell for substances such as glucose, amino acids, purine nucleosides, sodium, potassium, calcium, zinc, iron and several antimalarial drugs such as chloroquine, amodiaquine and mefloquine. In most cases such changes do not appear to be due to a modification in the affinity or specificity of red cell transporters; indeed, for most substances the membrane-associated transporters are either unaffected or are partially inactivated. In malaria-infected erythrocytes, where a striking increase in influx has been observed, it has been attributed to the insertion of parasite-encoded transporters into the red cell membrane or the formation of aqueous leaks and/or pores. Leak formation, in the vast majority of cases, does not appear to be dependent on the insertion of plasmodial proteins into the red cell membrane. However, since the data presently available are less than satisfactory for discriminating amongst the various possible transport mechanisms future studies will require painstaking efforts and carefully controlled conditions to discriminate amongst the various transport systems which are operational in the malaria-infected red cell and the parasite.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ancelin, M. L., Vial, H. J. & Philippot, J. R. (1985). Inhibitors of choline transport into Plasmodium-infected erythrocytes are effective antiplasmodial compounds in vitro. Biochemical Pharmacology 34, 4068–71.CrossRefGoogle ScholarPubMed
Bock, E. & Oesterlin, M. (1939). Über einige fluoreszenzmikroscopische Beobachtungen. Zentralblatt für Bakteriologie I. Abt. Orig. 143, 306–18.Google Scholar
Bookchin, R., Lew, V., Nagel, R. & Raventos, C. (1981). Increase in potassium and calcium transport in human red cells infected with Plasmodium falciparum. Journal of Physiology 312, 65P.Google Scholar
Bookchin, R., Raventos, C., Nagel, R. & Lew, V. (1981). Abnormal K and Ca transport and Ca accumulation in red cells infected in vitro with Plasmodium falciparum. Clinical Research 29, 615A.Google Scholar
Brown, A. M. & Lew, V. L. (1983). The effect of intracellular calcium on the sodium pump of human red cells. Journal of Physiology 343, 455–93.CrossRefGoogle ScholarPubMed
Büngener, W. & Nielsen, C. (1968). Nukleinsäurenstoffwechsel bei experimenteller Malaria. 2. Einbau von Adenosin und Hypoxanthin in die Nukleinsäuren von Malariaparasiten (Plasmodium berghei und Plasmodium vinckei). Zeitschrift für Tropenmedizin und Parasitologie 19, 185–97.Google ScholarPubMed
Büngener, W. & Nielsen, C. (1969). Nukleinsäurenstoffwechsel bei experimenteller Malaria. 3. Einbau von Adenin aus dem Adeninnukleotidpool der Erythrozyten in die Nukleinsäuren von Malariaparasiten. Zeitschrift für Tropenmedizin und Parasitologie 20, 6673.Google Scholar
Cabantchik, Z. I., Kutner, S., Krugliak, M. & Ginsburg, H. (1982). Anion transport inhibitors as suppressors of Plasmodium falciparum growth in in vitro cultures. Molecular Pharmacology 23, 92–9.Google Scholar
Carter, G. & Van Dyke, K. (1972). Drug effects on the phosphorylation of adenosine and its incorporation into nucleic acids of chloroquine sensitive and resistant erythrocyte-free malarial parasites. Proceedings of the Helminthological Society, Washington 39, 244–9.Google Scholar
Ceithaml, J. & Evans, F. A. (1946). The biochemistry of the malaria parasite VII. In vitro studies on the distribution of quinine between blood cells and their suspending medium. Archives of Biochemistry and Biophysics 10, 397416.Google Scholar
Chevli, R. & Fitch, C. D.(1982). The antimalarial drug mefloquine binds to membrane phospholipids. Antimicrobial Agents and Chemotherapy 21, 581–6.CrossRefGoogle ScholarPubMed
Chou, A. C., Chevli, R. & Fitch, C.D. (1980). Ferriprotoporphyrin IX fulfills the criteria for identification as the chloroquine receptor of malaria parasites. Biochemistry 19, 1543–9.CrossRefGoogle ScholarPubMed
Craescu, C. T., Cassoly, R., Galacteros, F. & Prehu, C. (1984). Decrease of transport of some polyols in sickle cells. Biochimica et Biophysica Acta 775, 291–6.CrossRefGoogle ScholarPubMed
Deslauriers, R., Geoffrion, Y., Butler, K. W. & Smith, I. C. P. (1985) Magnetic resonance studies of the pathophysiology of murine malaria. Quarterly Review of Biophysics 18, 65110.CrossRefGoogle ScholarPubMed
Deuticke, B. (1987). The role of membrane sulfhydryls in passive, mediated transport processes and for the barrier function of the erythrocyte membrane. Membrane Biochemistry 6, 309–26.CrossRefGoogle Scholar
Deuticke, B. & Haest, C. (1987). Lipid modulation of transport proteins in vertebrate cell membranes. Annual Review of Physiology 49, 221–35.CrossRefGoogle ScholarPubMed
Deuticke, B., Heller, K. B. & Haest, C. W. M. (1986). Leak formation in human erythrocytes by the radical-forming oxidant t-butyl-hydroperoxide. Biochimica et Biophysica Acta 854, 169.CrossRefGoogle Scholar
Deuticke, B., Poser, B., Lutkemeier, P. & Haest, C. W. M. (1983). Formation of aqueous pores in the human erythrocyte membrane after oxidative cross-linking of spectrin by diamide. Biochimica et Biophysica Acta 731, 196210.CrossRefGoogle ScholarPubMed
Dieckmann, A. & Jung, A. (1986). Mechanisms of sulphadoxine resistance in Plasmodium falciparum. Molecular and Biochemical Parasitology 19, 143–7.CrossRefGoogle ScholarPubMed
Diribe, C. O. & Warhurst, D. C. (1985). A study of the uptake of chloroquine in malaria-infected erythrocytes. Biochemical Pharmacology 34, 3019–27.CrossRefGoogle ScholarPubMed
Dise, C. A., Burch, J. W. & Goodman, D. B. P. (1982). Direct interaction of mepacrine with erythrocyte and platelet membrane phospholipid. Journal of Biological Chemistry 257, 4701–4.CrossRefGoogle ScholarPubMed
Dunn, M. J. (1969). Alterations of red blood cell sodium transport during malarial infection. Journal of Clinical Investigation 48, 674–84.CrossRefGoogle ScholarPubMed
Elford, E. C. (1986). L-Glutamine influx in malaria-infected erythrocytes: A target for antimalarials ? Parasitology Today 2, 309–12.CrossRefGoogle ScholarPubMed
Elford, B. C., Haynes, J. D., Chulay, J. D. & Wilson, R. J. M. (1985). Selective stage-specific changes in the permeability to small hydrophilic solutes of human erythrocytes infected with Plasmodium falciparum. Molecular and Biochemical Parasitology 16, 4360.CrossRefGoogle ScholarPubMed
Ferone, R. (1977). Folate metabolism in malaria. Bulletin of the World Health Organization 55, 291–8.Google ScholarPubMed
Fitch, C. D. (1969). Chloroquine resistance in malaria: a deficiency of chloroquine binding. Proceedings of the National Academy of Sciences, USA 64, 1181–7.CrossRefGoogle ScholarPubMed
Fitch, C. D. (1970). Plasmodium falciparum in owl monkeys: drug resistance and chloroquine-binding capacity. Science 169, 289–90.CrossRefGoogle ScholarPubMed
Fitch, C. D. (1986). Antimalarial schizontocides: ferriprotoporphyrin IX interaction hypothesis. Parasitology Today 2, 330–1.CrossRefGoogle ScholarPubMed
Fitch, C. D., Gonzalez, Y. & Chevli, R. (1975). Amodiaquine accumulation by mouse erythrocytes infected with Plasmodium berghei. Journal of Pharmacology and Experimental Therapeutics 195, 397403.Google ScholarPubMed
Fujii, T., Tamura, A., Fujii, H., Miwa, I. & Okuda, J. (1986). Effect of exogenous lipids incorporated into the membrane of human erythrocytes on its glucose transport activity. Biochemistry International 12, 873–9.Google ScholarPubMed
Fulton, J. D. & Grant, P. T. (1956). The sulphur requirements of the erythrocytic form of Plasmodium knowlesi. Biochemical Journal 63, 274–82.CrossRefGoogle Scholar
Geary, T. G., Jensen, J. B. & Ginsburg, H. (1986). Uptake of [3H] chloroquine by drug-sensitive and -resistant strains of the human malaria parasite Plasmodium falciparum. Biochemical Pharmacology 35, 3805–12.CrossRefGoogle ScholarPubMed
Gero, A. M., Bugledich, E. M. A., Paterson, A. R. P. & Jamieson, G. P. (1987). Stage specific alteration of nucleoside membrane permeability and nitrobenzylthioinosine insensitivity in Plasmodium falciparum infected erythrocytes. Molecular and Biochemical Parasitology (in the Press).Google Scholar
Ginsburg, H., Gorodetsky, R. & Krugliak, M. (1986 c). The status of zinc in malaria (Plasmodium falciparum) infected human red blood cells: stage dependent accumulation, compartmentation and effect of dipicolinate. Biochimica et Biophysica Acta 886, 337–44.CrossRefGoogle ScholarPubMed
Ginsburg, H. & Krugliak, M. (1983). Uptake of L-tryptophan by erythrocytes infected with malaria parasites (Plasmodium falciparum). Biochimica et Biophysica Acta 729, 97103.CrossRefGoogle ScholarPubMed
Ginsbubg, H., Krugliak, M., Eidelman, O. & Cabantchik, Z. I. (1983). New permeability pathways induced in membranes of Plasmodium falciparum infected erythrocytes. Molecular and Biochemical Parasitology 8, 177–90.CrossRefGoogle Scholar
Ginsburg, H., Krugliak, M., Eidelman, O. & Cabantchik, Z. I. (1986 a). New permeability pathways induced in membranes of Plasmodium falciparum infected erythrocytes. Molecular and Biochemical Parasitology 18, 123–5.CrossRefGoogle Scholar
Ginsburg, H., Kutner, S., Zangwil, M. & Cabantchik, Z. I. (1986 b). Selectivity properties of pores induced in host erythrocyte membrane by Plasmodium falciparum. Effect of parasite maturation. Biochimica et Biophysica Acta 861, 194–6.CrossRefGoogle ScholarPubMed
Ginsburg, H. & Stein, W. D. (1987). Biophysical analysis of novel transport pathways induced in red blood cell membranes. Journal of Membrane Biology 96, 110.CrossRefGoogle ScholarPubMed
Gupta, C. M., Alam, A., Mathur, P. & Dutta, G. (1982). A new look at non-parasitized red cells of malaria-infected monkeys. Nature, London 299, 259–61.CrossRefGoogle Scholar
Gutierrez, J. (1966). Effect of the antimalarial chloroquine on the phospholipid metabolism of avian malaria and heart tissue. American Journal of Tropical Medicine and Hygiene 15, 818–22.CrossRefGoogle ScholarPubMed
Gutteridge, W. E. & Trigg, P. I. (1971). Action of pyrimethamine and related drugs against Plasmodium knowlesi in vitro. Parasitology 62, 431–44.CrossRefGoogle Scholar
Haldar, K., Henderson, C. L. & Cross, G. A. M. (1986). Identification of the parasite transferrin receptor of Plasmodium falciparum-infected erythrocytes and its acylation via 1,2-diacyl-sn-glycerol. Proceedings of the National Academy of Sciences, USA 83, 8565–9.CrossRefGoogle ScholarPubMed
Hansen, B. D., Sleeman, H. K. & Pappas, P. W. (1980). Purine base and nucleoside uptake in Plasmodium berghei and host erythrocytes. Journal of Parasitology 66, 205–12.CrossRefGoogle ScholarPubMed
Heller, K. B., Poser, B., Haest, E. W. M. & Deuticke, B. (1984). Oxidative stress of human erythrocytes by iodate and periodate. Reversible formation of aqueous membrane pores due to SH oxidation. Biochimica et Biophysica Acta 777, 107–16.CrossRefGoogle Scholar
Holz, G. G. Jr. (1977). Lipids and the malarial parasite. Bulletin of the World Health Organization 55, 237–48.Google ScholarPubMed
Homewood, C. A. & Neame, K. D. (1974). Malaria and the permeability of the host erythrocyte. Nature, London 252, 718–19.CrossRefGoogle ScholarPubMed
Howard, R. J. (1982). Alterations in the surface membrane of red blood cells during malaria. Immunological Reviews 61, 67107.CrossRefGoogle ScholarPubMed
Howard, R. J. (1986). Malaria: antigens and host–parasite interactions. In Parasite Antigens: Toward New Strategies for Vaccines, Receptors and Ligands in Intracellular Communication, vol. 7 (ed. Pearson, T.), pp. 111165. New York: Dekker.Google Scholar
Jain, S. & Shohert, S. (1982). Red blood cell [14C] cholesterol exchange and plasma cholesterol esterifying activity of normal and sickle cell blood. Biochimica et Biophysica Acta 688, 1115.CrossRefGoogle ScholarPubMed
Krogstad, D. J. & Schlesinger, P. H. (1986). A perspective on antimalarial action: effects of weak bases on Plasmodium falciparum. Biochemical Pharmacology 35, 547–52.CrossRefGoogle ScholarPubMed
Krungkrai, J. & Yuthavong, Y. (1983). Enhanced Ca2+ uptake by mouse erythrocytes in malarial (Plasmodium berghei) infection. Molecular and Biochemical Parasitology 7, 227–35.CrossRefGoogle ScholarPubMed
Kutner, S., Baruch, D., Ginsburg, H. & Cabantchik, Z. I. (1982). Alterations in membrane permeability of malaria-infected human erythrocytes are related to the growth stage of the parasite. Biochimica et Biophysica Acta 687, 113–17.CrossRefGoogle Scholar
Kutner, S., Breuer, W. V., Ginsburg, H., Aley, S. B. & Cabantchik, Z. I. (1985). Characterization of permeation pathways in the plasma membrane of human erythrocytes infected with early stages of Plasmodium falciparum: Association with parasite development. Journal of Cellular Physiology 125, 521–7.CrossRefGoogle ScholarPubMed
Kutner, S., Breuer, W. V., Ginsburg, H. & Cabantchik, Z. I. (1987). On the mode of action of phlorizin as an antimalarial agent in in vitro cultures of Plasmodium falciparum. Biochemical Pharmacology 36, 123–9.CrossRefGoogle ScholarPubMed
Kutner, S., Ginsburg, H. & Cabantchik, Z. I. (1983). Permselectivity changes in malaria (Plasmodium falciparum) infected human red blood cell membranes. Journal of Cellular Physiology 114, 245–51.CrossRefGoogle ScholarPubMed
Lange, Y., Molinaro, A. L., Chauncey, T. R. & Steck, T. L. (1983). On the mechanism of transfer of cholesterol between human erythrocytes and plasma. Journal of Biological Chemistry 258, 6920–6.CrossRefGoogle Scholar
Lantz, C. H., Van Dyke, K. & Carter, G. (1971). Plasmodium berghei: in vitro incorporation of purine derivatives into nucleic acids. Experimental Parasitology 29, 402–16.CrossRefGoogle ScholarPubMed
Leida, M. N., Mahoney, J. & Eaton, J. (1981). Intraerythrocytic plasmodial calcium metabolism. Biochemical and Biophysical Research Communications 103, 402–6.CrossRefGoogle ScholarPubMed
Lieber, M. R., Lange, Y., Weinstein, R. & Steck, T. L. (1984). Interaction of chlorpromazine with the human erythrocyte membrane. Journal of Biological Chemistry 259, 9225–34.CrossRefGoogle ScholarPubMed
Lux, S. E. (1983). Disorders of the red cell membrane skeleton: Hereditary spherocytosis and hereditary elliptocytosis. In Metabolic Basis of Inherited Disease, 5th Edn (ed. Stanbury, J.), pp. 15731605. New York: McGraw Hill.Google Scholar
Lux, S. & Glader, B. (1981). Disorders of the red cell membrane. In Hematology of Infancy and Childhood (ed. Nathan, D. G. & Oshi, I. S.), pp. 456565. Philadelphia: Saunders.Google Scholar
Macomber, P. B., O'Brien, R. L. & Hahn, F. E. (1966). Chloroquine: Physiological basis of drug resistance in Plasmodium berghei. Science 152, 1374–5.CrossRefGoogle ScholarPubMed
Manandhar, M. S. P. & Van Dyke, K. (1975). Detailed purine salvage metabolism in and outside the free malarial parasite. Experimental Parasitology 37, 138–46.CrossRefGoogle ScholarPubMed
Martin, S. K., Oduola, A. M. J. & Milhous, W. K. (1987). Reversal of chloroquine resistance in Plasmodium falciparum by verapamil. Science 235, 899901.CrossRefGoogle ScholarPubMed
McCormick, G. J. (1970). Amino acid transport and incorporation in red blood cells of normal and Plasmodium knowlesi-iniected rhesus monkeys. Experimental Parasitology 27, 143–9.CrossRefGoogle ScholarPubMed
Morand, O. & Aigrot, M. S. (1985). Transport of fatty acids across the membrane of human erythrocyte ghosts. Biochimica et Biophysica Acta 835, 6876.CrossRefGoogle ScholarPubMed
Moulder, J. (1962). The Biochemistry of Intracellular Parasitism. Chicago, Illinois: University of Chicago Press.Google Scholar
Neame, K. D., Brownbill, P. A. & Homewood, C. A. (1974). The uptake and incorporation of nucleosides into normal erythrocytes and erythrocytes containing Plasmodium berghei. Parasitology 69, 329–35.CrossRefGoogle ScholarPubMed
Paterson, A. R. P. & Cass, C. E. (1986). Transport of nucleoside drugs in animal cells. In Membrane Transport of Antineoplastic Agents, (ed. Goldman, I. D.), pp. 309329. New York: Pergamon Press.Google Scholar
Paterson, A. R. P., Harley, E. R. & Cass, C. E. (1984). Inward fluxes of adenosine in erythrocytes and cultured cells measured by a quenched-flow method. Biochemical Journal 224, 1001–8.CrossRefGoogle ScholarPubMed
Peto, T. E. A. & Thompson, J. L. (1986). A reappraisal of the effects of iron and desferrioxamine on the growth of Plasmodium flaciparum ‘in vitro’: the unimportance of serum iron. British Journal of Haematology 63, 273–80.CrossRefGoogle Scholar
Peters, W. (1987). Chemotherapy and Drug Resistance in Malaria. London: Academic Press.Google Scholar
Plagemann, P. G. W., Wohlhueter, R. M. & Kraupp, M. (1985). Adenosine uptake, transport, and metabolism in human erythrocytes. Journal of Cellular Physiology 125, 330–6.CrossRefGoogle ScholarPubMed
Polet, H. & Barr, C. F. (1969). Uptake of chloroquine-3-H3 by Plasmodium knowlesi in vitro. Journal of Pharmacology and Experimental Therapeutics 168, 187–92.Google ScholarPubMed
Polet, H. & Conrad, M. E. (1969). In vitro studies on the amino acid metabolism of Plasmodium knowlesi and the antiplasmodial effect of the isoleucine antagonists. Military Medicine 134, 939–44.CrossRefGoogle ScholarPubMed
Pollack, S. & Fleming, J. (1984). Plasmodium falciparum takes up iron from transferrin. British Journal of Haematology 58, 289–93.CrossRefGoogle ScholarPubMed
Rock, R. C. (1971 a). Incorporation of 14C-labelled non-lipid precursors into lipids of Plasmodium knowlesi in vitro. Comparative Biochemistry and Physiology 40B, 657–69.Google Scholar
Rock, R. C. (1971 b). Incorporation of 14C-labelled fatty acids into lipids of rhesus erythrocytes and Plasmodium knowlesi in vitro. Comparative Biochemistry and Physiology 40B, 893906.Google Scholar
Rodriguez, M. H. & Jungery, M. (1986). A protein on Plasmodium falciparum-infected erythrocytes functions as a transferrin receptor. Nature, London 324, 388–91.CrossRefGoogle ScholarPubMed
Rosenberg, R. (1981). A kinetic analysis of L-tryptophan transport in human red blood cells. Biochimica et Biophysica Acta 649, 262–8.CrossRefGoogle ScholarPubMed
San George, R. C., Nagel, R. L. & Fabry, M. E. (1984). On the mechanism for the red-cell accumulation of mefloquine, an antimalarial drug. Biochimica et Biophysica Acta 803, 174–81.CrossRefGoogle ScholarPubMed
Schubert, D. & Boss, K. (1982). Band 3 protein–cholesterol interactions in erythrocyte membranes: possible role in anion transport and dependency on membrane phospholipid. FEBS Letters 150. 48.CrossRefGoogle ScholarPubMed
Schwister, K. & Deuticke, B. (1985). Formation and properties of aqueous leaks induced in human erythrocytes by electrical breakdown. Biochimica et Biophysica Acta 816, 332– ? ?CrossRefGoogle ScholarPubMed
Sherman, I. W. (1977). Transport of amino acids and nucleic acid precursors in malarial parasites. Bulletin of the World Health Organization 55, 211–25.Google ScholarPubMed
Sherman, I. W. (1979). Biochemistry of Plasmodium (malarial parasites). Microbiological Review 43, 453–95.CrossRefGoogle ScholarPubMed
Sherman, I. W. (1984). Metabolism. In Handbook of Experimental Pharmacology (ed. Peters, W. and Richards, W. H. G.). Berlin-Heidelberg: Springer-Verlag.Google Scholar
Sherman, I. W. (1985). Membrane structure and function of malaria parasites and the infected erythrocyte. Parasitology 91, 609–45.CrossRefGoogle ScholarPubMed
Sherman, I. W., Ruble, J. A. & Tanigoshi, L. (1969). Incorporation of 14C-amino acids by malaria (Plasmodium lophurae). 1. Role of ions and amino acids in the medium. Military Medicine 134, 954–61.CrossRefGoogle Scholar
Sherman, I. W. & Tanigoshi, L. (1972). Incorporation of 14C-amino acids by malaria (Plasmodium lophurae). V. Influence of antimalarials on the transport and incorporation of amino acids. Proceedings of the Helminthological Society, Washington 39, 250–60.Google Scholar
Sherman, I. W. & Tanigoshi, L. (1974 a). Glucose transport in the malarial (Plasmodium lophurae) infected erythrocyte. Journal of Protozoology 21, 603–7.CrossRefGoogle ScholarPubMed
Sherman, I. W. & Tanigoshi, L. (1974 b). Incorporation of 14C-amino acids by malarial plasmodia (Plasmodium lophurae). VI. Changes in the kinetic constants of amino acid transport during infection. Experimental Parasitology 35, 369–73.CrossRefGoogle Scholar
Sherman, I. W., Tanigoshi, L. & Mudd, J. B. (1971). Incorporation of 14C-amino-acids by malaria (Plasmodium lophurae). II. Migration and incorporation of amino acids. International Journal of Biochemistry 2, 2740.CrossRefGoogle Scholar
Sherman, I. W., Virkar, R. A. & Ruble, J. A. (1967). The accumulation of amino acids by Plasmodium lophurae (avian malaria). Comparative Biochemistry and Physiology 23, 4357.CrossRefGoogle ScholarPubMed
Sirawaraporn, W., Panijpan, B. & Yuthavong, Y. (1982). Plasmodium berghei: uptake and distribution of chloroquine in infected mouse erythrocytes. Experimental Parasitology 54, 260–70.CrossRefGoogle ScholarPubMed
Tan-Ariya, P. & Brockelman, C. R. (1983). Plasmodium falciparum: variations in p-aminobenzoic acid requirements as related to sulfadoxine sensitivity. Experimental Parasitology 55, 364–71.CrossRefGoogle ScholarPubMed
Tanabe, K., Mikkelsen, R. B. & Wallach, D. F. H. (1982). Calcium transport of Plasmodium chabaudi-infected erythrocytes. Journal of Cell Biology 93, 680–4.CrossRefGoogle ScholarPubMed
Ting, A. W. & Sherman, I. W. (1981). Hypoxanthine transport in normal and malaria-infected erythrocytes. International Journal of Biochemistry 13, 955–8.CrossRefGoogle ScholarPubMed
Tracy, S. M. & Sherman, I. W. (1972). Purine uptake and utilization by the avian malaria parasite Plasmodium lophurae. Journal of Protozoology 19, 151–4.CrossRefGoogle ScholarPubMed
Trager, W. (1971). Malaria parasites (Plasmodium lophurae) developing extracellularly in vitro: incorporation of labeled precursors. Journal of Protozoology 18, 392–9.CrossRefGoogle ScholarPubMed
Trager, W. & Jensen, J. B.(1976). Human malaria parasites in continuous culture. Science 193, 673–5.CrossRefGoogle ScholarPubMed
Tripatara, A. & Yuthavong, Y. (1986). Effect of inhibitors on glucose transport in malaria (Plasmodium berghei) infected erythrocytes. International Journal for Parasitology 16, 441–6.CrossRefGoogle ScholarPubMed
Van Dyke, K. (1975). Comparison of tritiated hypoxanthine, adenine and adenosine for purine-salvage incorporation into nucleic acids of the malarial parasite, Plasmodium berghei. Tropenmedizin und Parasitologie 26, 232–8.Google ScholarPubMed
Vial, H. J., Philippot, J. R. & Wallach, D. F. H. (1984). A reevaluation of the status of cholesterol in erythrocytes infected by Plasmodium knowlesi and P. falciparum. Molecular and Biochemical Parasitology 13, 5366.CrossRefGoogle ScholarPubMed
Vial, H. J., Thuet, M. J., Broussal, J. L. & Philippot, J. R. (1982 a). Phospholipid biosynthesis by Plasmodium knowlesi-infected erythrocytes: the incorporation of phospholipid precursors and the identification of previously undetected metabolic pathways. Journal of Parasitology 68, 379–91.CrossRefGoogle ScholarPubMed
Vial, H. J., Thuet, M. J. & Philippot, J. R. (1982 b). Phospholipid biosynthesis in synchronous Plasmodium falciparum cultures. Journal of Protozoology 29, 258–63.CrossRefGoogle ScholarPubMed
Warhurst, D. C. (1987). Antimalarial interaction with ferriprotoporphyrin IX monomer and its relationship to activity of the blood schizontocides. Annals of Tropical Medicine and Parasitology 81, 65–7.CrossRefGoogle ScholarPubMed
Wheeler, T. J. (1986). Kinetics of glucose transport in human erythrocytes. Biochimica et Biophysica Acta 862, 387–99.CrossRefGoogle ScholarPubMed
Weiser, M. B., Razin, M. & Stein, W. D. (1983). Kinetic tests of models for sugar transport in human erythrocytes and a comparison of fresh and cold-stored cells. Biochimica et Biophysica Acta 727, 379–88.CrossRefGoogle Scholar
Yamada, K. A. & Sherman, I. W. (1981). Purine metabolism by the avian malarial parasite Plasmodium lophurae. Molecular and Biochemical Parasitology 3, 253–64.CrossRefGoogle ScholarPubMed
Yayon, A., Cabantchik, Z. I. & Ginsburg, H. (1984). Identification of the acidic compartment of Plasmodium falciparum-infected human erythrocytes as the target of the antimalarial drug chloroquine. EM BO Journal 3, 2695–700.Google ScholarPubMed
Yayon, A. & Ginsburg, H. (1982). The transport of chloroquine across human erythrocyte membranes is mediated by a simple symmetric carrier. Biochimica et Biophysica Acta 686, 197203.CrossRefGoogle ScholarPubMed
Zarchin, S., Krugliak, M. & Ginsburg, H. (1986). Digestion of the host erythrocyte by malaria parasites is the primary target for quinoline-containing antimalarials. Biochemical Pharmacology 35, 2435–42.CrossRefGoogle ScholarPubMed