Skip to main content
×
×
Home

Genetic diversity analysis of a potato (Solanum tuberosum L.) collection including Chiloé Island landraces and a large panel of worldwide cultivars

  • F. Esnault (a1), J. Solano (a2), M. R. Perretant (a3), M. Hervé (a4), A. Label (a1), R. Pellé (a1), J. P. Dantec (a1), G. Boutet (a4), P. Brabant (a5) and J. E. Chauvin (a1)...
Abstract

In order to investigate further the interest of using the Chilean gene pool in potato breeding programmes, the genetic diversity and population structure of a collection of Solanum tuberosum L. genotypes including 350 worldwide varieties or breeders' lines (referred to as the modern group) and 30 Chiloé Island landraces were examined using simple sequence repeat markers. The close genetic proximity of the Chiloé Island landraces to the modern group was confirmed using several structure analysis methods: principal coordinate analysis; hierarchical clustering analysis; analysis of molecular variance; Bayesian model-based clustering analysis. The latter analysis, in particular, revealed no clear genetic structure between the modern group and the Chiloé Island landraces. The Chiloé Island germplasm appears to represent an interesting gene pool that could be exploited in potato breeding programmes using an association mapping approach.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Genetic diversity analysis of a potato (Solanum tuberosum L.) collection including Chiloé Island landraces and a large panel of worldwide cultivars
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Genetic diversity analysis of a potato (Solanum tuberosum L.) collection including Chiloé Island landraces and a large panel of worldwide cultivars
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Genetic diversity analysis of a potato (Solanum tuberosum L.) collection including Chiloé Island landraces and a large panel of worldwide cultivars
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author. E-mail: florence.esnault@rennes.inra.fr
References
Hide All
Achenbach, U, Paulo, J, Ilarionova, E, Lubeck, J, Strahwald, J, Tacke, E, Hofferbert, HR and Gebhardt, C (2009) Using SNP markers to dissect linkage disequilibrium at a major quantitative trait locus for resistance to the potato cyst nematode Globodera pallida on potato chromosome V. Theoretical and Applied Genetics 118: 619629.
Ames, M and Spooner, DM (2008) DNA from herbarium specimens settles a controversy about origins of the European potato. American Journal of Botany 95: 252257.
D'Hoop, BB, Paulo, MJ, Mank, RA, van Eck, HJ and van Eeuwijk, FA (2008) Association mapping of quality traits in potato (Solanum tuberosum L.). Euphytica 161: 4760.
D'Hoop, BB, Paulo, MJ, Kowitwanich, K, Sengers, M, Visser, RGF, van Eck, HJ and van Eeuwijk, FA (2010) Population structure and linkage disequilibrium unravelled in tetraploid potato. Theoretical and Applied Genetics 121: 11511170.
Dodds, KS (1962) Classification of cultivated potatoes. In: Correll, DS (ed.) The Potato and its Wild Relatives. Renner, TX: Texas Research Foundation, pp. 517539.
Doyle, JJ and Doyle, JL (1990) Isolation of plant DNA from fresh tissue. Focus 12: 1315.
Evanno, G, Regnaut, S and Goudet, J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 26112620.
Excoffier, L, Laval, G and Schneider, S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics 1: 4750.
Feingold, S, Lloyd, J, Norero, N, Bonierbale, M and Lorenzen, J (2005) Mapping and characterization of new EST-derived microsatellites for potato (Solanum tuberosum L.). Theoretical and Applied Genetics 111: 456466.
Flint-Garcia, SA, Thornsberry, JM and Buckler, ES (2003) Structure of linkage disequilibrium in plants. Annual Review of Plant Biology 54: 357374.
Fu, YB, Peterson, GW, Richards, KW, Tarn, TR and Percy, JE (2009) Genetic diversity of Canadian and exotic potato germplasm revealed by simple sequence repeat markers. American Journal of Potato Research 86: 3848.
Gebhardt, C, Ballvora, A, Walkemeier, B, Oberhagemann, P and Schüler, K (2004) Assessing genetic potential in germplasm collections of crop plants by marker–trait association: a case study for potatoes with quantitative variation of resistance to late blight and maturity type. Molecular Breeding 13: 93102.
Ghislain, M, Spooner, DM, Rodriguez, F, Villamon, F, Nunez, J, Vasquez, C, Waugh, R and Bonierbale, M (2004) Selection of highly informative and user-friendly microsatellites (SSRs) for genotyping of cultivated potato. Theoretical and Applied Genetics 108: 881890.
Ghislain, M, Nunez, J, Herrera, MR and Spooner, DM (2009) The single Andigenum origin of Neo-Tuberosum potato materials is not supported by microsatellite and plastid marker analyses. Theoretical and Applied Genetics 118: 963969.
Ispizua, VN, Guma, IR, Feingold, S and Clausen, AM (2007) Genetic diversity of potato landraces from northwestern Argentina assessed with simple sequence repeats (SSRs). Genetic Resources and Crop Evolution 54: 18331848.
Lander, ES and Schork, NJ (1994) Genetic dissection of complex traits. Science 265: 20372048.
Li, L, Strahwald, J, Hofferbert, HR, Lübeck, J, Tacke, E, Junghans, H, Wunder, J and Gebhardt, C (2005) DNA variation at the invertase locus invGE/GF is associated with tuber quality traits in populations of potato breeding clones. Genetics 170: 813821.
Love, SL (1999) Founding clones, major contributing ancestors, and exotic progenitors of prominent North American potato cultivars. American Journal of Potato Research 76: 263272.
Malosetti, M, van der Linden, CG, Vosman, B and van Eeuwijk, FA (2007) A mixed-model approach to association mapping using pedigree information with an illustration of resistance to Phytophthora infestans in potato. Genetics 175: 879889.
Milbourne, D, Meyer, RC, Collins, AJ, Ramsay, LD, Gebhardt, C and Waugh, R (1998) Isolation, characterisation and mapping of simple sequence repeat loci in potato. Molecular and General Genetics 259: 233245.
Ovchinnikova, A, Krylova, E, Gavrilenko, T, Smekalova, T, Zhuk, M, Knapp, S and Spooner, DM (2011) Taxonomy of cultivated potatoes (Solanum section Petota: Solanaceae). Botanical Journal of the Linnean Society 165: 107155.
Pajerowska-Mukhtar, K, Stich, B, Achenbach, U, Ballvora, A, Lubeck, J, Strahwald, J, Tacke, E, Hofferbert, HR, Ilarionova, E, Bellin, D, Walkemeier, B, Basekow, R, Kersten, B and Gebhardt, C (2009) Single nucleotide polymorphisms in the Allene Oxide Synthase 2 gene are associated with field resistance to late blight in populations of tetraploid potato cultivars. Genetics 181: 11151127.
Perrier X and Jacquemoud-Collet JP (2006) DARwin software. Available at http://darwinciradfr/darwin.
Pritchard, JK, Stephens, M and Donnelly, P (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945959.
Rios, D, Ghislain, M, Rodriguez, F and Spooner, DM (2007) What is the origin of the European potato? Evidence from Canary Island landraces. Crop Science 47: 12711280.
Simko, I (2004) One potato, two potato: haplotype association mapping in autotetraploids. Trends in Plant Science 9: 441448.
Simko I, Costanzo S, Haynes KG, Christ BJ and Jones RW (2004a) Linkage disequilibrium mapping of a Verticillium dahliae resistance quantitative trait locus in tetraploid potato (Solanum tuberosum) through a candidate gene approach. Theoretical and Applied Genetics 108: 217–224.
Simko, I, Haynes, KG, Ewing, EE, Costanzo, S, Christ, BJ and Jones, RW (2004b) Mapping genes for resistance to Verticillium albo-atrum in tetraploid and diploid potato populations using haplotype association tests and genetic linkage analysis. Molecular Genetics and Genomics 271: 522531.
Solano J (2011) Etude d'une collection de pommes de terre (Solanum tuberosum spp tuberosum L.) native de Chiloé (Chili): Conservation in situ, diversité morphologique et génétique, comportement vis-à-vis de Phytophthora infestans. PhD Thesis, AgroParisTech.
Solano, J, Morales, D and Anabalon, L (2007) Molecular description and similarity relationships among native germplasm potatoes (Solanum tuberosum ssp. tuberosum L.) using morphological data and AFLP markers. Electronic Journal of Biotechnology 102: 436443.
Spooner, DM, Contreras, A and Bamberg, JB (1991) Potato germplasm collecting expedition to Chile, 1989, and utility of the Chilean species. American Potato Journal 68: 681690.
Spooner, DM, McLean, K, Ramsay, G, Waugh, R and Bryan, GJ (2005) A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Proceedings of the National Academy of Sciences of the United States of America 102: 1469414699.
Sukhotu, T and Hosaka, K (2006) Origin and evolution of Andigena potatoes revealed by chloroplast and nuclear DNA markers. Genome 49: 636647.
Urbany, C, Stich, B, Schmidt, L, Simon, L, Berding, H, Junghans, H, Niehoff, KH, Braun, A, Tacke, E, Hofferbert, HR, Lubeck, J, Strahwald, J and Gebhardt, C (2011) Association genetics in Solanum tuberosum provides new insights into potato tuber bruising and enzymatic tissue discoloration. BMC Genomics 12. doi:10.1186/1471-2164-12-7.
Veteläinen, M, Gammelgard, E and Valkonen, JPT (2005) Diversity of Nordic landrace potatoes (Solanum tuberosum L.) revealed by AFLPs and morphological characters. Genetic Resources and Crop Evolution 52: 9991010.
Yu, J, Pressoir, G, Briggs, WH, Vroh Bi, I, Yamasaki, M, Doebley, JF, McMullen, MD, Gaut, BS, Nielsen, DM, Holland, JB, Kresovich, S and Buckler, ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics 38: 203208.
Zhang, L, Brown, CR, Culley, D, Baker, B, Kunibe, E, Denney, H, Smith, C, Ward, N, Beavert, T, Coburn, J, Pavek, JJ, Dauenhauer, N and Dauenhauer, R (2010) Inferred origin of several Native American potatoes from the Pacific Northwest and Southeast Alaska using SSR markers. Euphytica 174: 1529.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Plant Genetic Resources
  • ISSN: 1479-2621
  • EISSN: 1479-263X
  • URL: /core/journals/plant-genetic-resources
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Esnault Supplementary Material
Table

 Word (506 KB)
506 KB

Metrics

Full text views

Total number of HTML views: 39
Total number of PDF views: 117 *
Loading metrics...

Abstract views

Total abstract views: 232 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st June 2018. This data will be updated every 24 hours.