Skip to main content
×
×
Home

Anticipating emerging biotechnology threats: A case study of CRISPR

  • Kathleen M. Vogel (a1) and Sonia Ben Ouagrham-Gormley (a2)
Abstract

This article discusses the contingencies and complexities of CRISPR. It outlines key problems regarding off-target effects and replication of experimental work that are important to consider in light of CRISPR’s touted ease of use and diffusion. In light of literature on the sociotechnical dimensions of the life sciences and biotechnology and literature on former bioweapons programs, this article argues that we need more detailed empirical case studies of the social and technical factors shaping CRISPR and related gene-editing techniques in order to better understand how they may be different from other advances in biotechnology — or whether similar features remain. This information will be critical to better inform intelligence practitioners and policymakers about the security implications of new gene-editing techniques.

Copyright
Corresponding author
Correspondence: Kathleen M. Vogel, School of Public Policy, University of Maryland at College Park, 3039 Van Munching Hall, College Park, MD 20742. Email: kvogel12@umd.edu
References
Hide All
1 Stassen, H. E., “Atoms for peace,” Ladies’ Home Journal , August 1955, 48.
2 Del Sesto, S. L., “Wasn’t the future of nuclear energy wonderful?,” in Imagining Tomorrow: History, Technology, and the American Future, Corn, J. J., ed. (Cambridge, MA: MIT Press, 1986), pp. 5876.
3 Fisher, H. M., “Big things ahead,” American Magazine , April 1954, 127.
4 Franklin, H. B., War Stars: The Superweapon and the American Imagination (Oxford: Oxford University Press, 1988).
5 Smith, M. R. and Marx, L., Does Technology Drive History? The Dilemma of Technological Determinism (Cambridge, MA: MIT Press, 1994).
6 Hilts, P. J., “Biological weapons reweighed,” Washington Post, August 17, 1986, https://www.washingtonpost.com/archive/politics/1986/08/17/biological-weapons-reweighed/10268231-f545-44c8-901f-3403d99e275b/?utm_term=.e2011b306a04, accessed September 7, 2018.
7 Vogel, K. M., “Technological frames and narratives in U.S. bioweapons assessments and policymaking,” in Phantom Menace or Looming Danger? A New Framework for Assessing Bioweapons Threats (Baltimore, MD: Johns Hopkins University Press, 2013), pp. 1655.
8 Schoch-Spana, M., “Bioterrorism: US public health and secular apocalypse,” Anthropology Today , 2004, 20(5): 813.
9 Hsu, P. D., Lander, E. S., and Zhang, F., “Development and applications of CRISPR-Cas9 for genome engineering,” Cell , 2014, 157(6): 12621278, https://doi.org/10.1016/j.cell.2014.05.010.
10 Doudna, J. and Charpentier, E., “The new frontier of genome engineering with CRISPR-Cas9,” Science , 2014, 346(6213):, 1258096-1–1258096-9.
11 Ledford, H., “Alternative CRISPR system could improve genome editing,” Nature , 2015, 526(7571): 17.
12 Esvelt, K. M., Smidler, A. L., Catteruccia, F., and Church, G. M., “Concerning RNA-guided gene drives for the alteration of wild populations,” eLIFE , July 17, 2014, https://elifesciences.org/content/3/e03401v1, accessed September 7, 2018.
13 Ouagrham-Gormley, S. B. and Vogel, K. M., “Gene drives: The good, the bad, the hype,” Bulletin of the Atomic Scientists , October 2016, 72, http://thebulletin.org/gene-drives-good-bad-and-hype10027, accessed September 7, 2018.
14 Gerstein, D. M., “How genetic editing became a national security threat,” Bulletin of the Atomic Scientists , April 25, 2016, http://thebulletin.org/how-genetic-editing-became-national-security-threat9362, accessed September 7, 2018.
15 Jasanoff, S., Hurlbut, J. B., and Saha, K., “CRISPR democracy: Gene editing and the need for inclusive deliberation,” Issues in Science and Technology , 2015, 32(1): 2532.
16 Khan, L., “A CRISPR future,” Bulletin of the Atomic Scientists , December 16, 2015, http://thebulletin.org/crisprfuture8986, accessed September 7, 2018.
17 Khan, J., “The CRISPR quandary,” New York Times Magazine , November 9, 2015, http://www.nytimes.com/2015/11/15/magazine/the-crispr-quandary.html?_r=0, accessed September 7, 2018.
18 Oye, K. A. et al. , “Regulating gene drives,” Science , 2014, 345(6197): 626628.
19 Begley, S., “Gene drive gives scientists power to highjack evolution,” STAT November 17, 2015, https://www.statnews.com/2015/11/17/gene-drive-hijack-evolution/, accessed September 7, 2018.
20 Shaw, J., “Editing an end to malaria,” Harvard Magazine , May/June 2016, http://www.harvardmagazine.com/2016/05/editing-an-end-to-malaria, accessed September 7, 2018.
21 Clapper, J. R., “Worldwide threat assessment of the US intelligence community,” Statement for the Record to the Senate Armed Services Committee, February 9, 2016,https://www.dni.gov/files/documents/SASC_Unclassified_2016_ATA_SFR_FINAL.pdf, accessed September 7, 2018.
22President’s Council of Advisors on Science and Technology, “Letter to the President,” November 2016, https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/PCAST/pcast_biodefense_letter_report_final.pdf, accessed September 7, 2018.
23BWC Preparatory Committee, “New scientific and technological developments relevant to the Convention: Some examples,” Eighth Review Conference of the States Parties to the Convention on the Prohibition of the Development, Production and Stockpiling of Bacteriological (Biological) and Toxin Weapons and on Their Destruction, BWC/CONF.VIII/PC/WP.18, August 5, 2016.
24 Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., and Charpentier, E., “A Programmable dual-RNA-guided DNA endonuclease in adaptative bacterial immunity,” Science , 2012, 337(6096): 816821.
25 Ouagrham-Gormley, S. B. and Fye-Marnien, S. R., “Is CRISPR a security threat?,” in Defense Against Biological Attacks (London: Springer Nature, forthcoming).
26 Barrangou, R. and Horvath, P., “A decade of discovery: CRISPR functions and applications,” Nature Microbiology , 2017, 2: article 17092.
27 Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., and Zhang, F., “Multiplex genome engineering using CRISPR/Cas systems,” Science , 2013, 339(6121): 819822.
29 LePage, M., “Boom in human gene editing as 20 CRISPR trials gear up,” New Scientist , June 7, 2017, https://www.newscientist.com/article/2133095-boom-in-human-gene-editing-as-20-crispr-trials-gear-up/, accessed September 7, 2018.
30 Marchione, M., “US scientists try 1st gene editing in the body,” Associated Press, November 15, 2017,https://apnews.com/4ae98919b52e43d8a8960e0e260feb0a/AP-Exclusive:-US-scientists-try-1st-gene-editing-in-the-body?utm_campaign=SocialFlow&utm_source=Twitter&utm_medium=AP, accessed September 7, 2018.
31 Haridy, R., “FDA hits pause on one of the first US human clinical trials to use CRISPR,” New Atlas, May 31, 2018, https://newatlas.com/us-crispr-human-trial-hold-fda/54862/, accessed September 7, 2018.
32 Peng, R., Lin, G., and Li, J., “Potential pitfalls of CRISPR/Cas9-mediated genome editing,” FEBS Journal , 2016, 283: 12181231.
33 Fu, Y., Foden, J. A., Khayter, C., Maeder, M. L., Reyon, D., Joung, J. K., and Sander, J. D., “High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells,” Nature Biotechnology , 2013, 31: 822826.
34 Pattanayak, V., Lin, S., Builinger, J. P., Ma, E., Doudna, J. A., and Liu, D. R., “High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity,” Nature Biotechnology , 2013, 31: 839843.
35 Ma, Y., Zhang, L., and Huang, X., “Genome modification by CRISPR/Cas9,” FEBS Journal , 2014, 281: 51865193.
36 Doudna, J. A. and Sternberg, S., A Crack in Creation (Boston: Houghton Mifflin Harcourt, 2017).
37 Ledford, H., “Biohackers gear up for genome editing,” Nature , 2015, 524(7566): 398399.
38 Schaefer, K. A. et al. , “Unexpected mutations after CRISPR Cas9 editing in vivo,” Nature Methods , 2017, 14(6): 547548, published online May 30, 2017; updated online June 14, 2017; corrected online July 25, 2017.
39 O’Brien, A. and Bailey, T. L., “GT-Scan: Identifying unique genomic targets,” Bioinformatics , 2014, 30: 26732675.
40 Montage, T. G., Cruz, J. M., Gagno, J. A., Church, G. M., and Valen, E., “CHOPCHOP: A CRISPR/Cas9 and TALEN web tool for genome editing,” Nucleic Acids Research , 2014, 42: W401W407.
41 Shen, B., Zhang, W., Jun, Z., Zhou, J., Wang, J., Chen, L., and Wang, L. et al. , “Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects,” Nature Methods , 2014, 11: 399402.
42 Kim, H. and Kim, J. S., “A guide to genome engineering with programmable nucleases,” Nature Review Genetics , 2014, 15: 321334.
43 Diamond, P. F., “Fixing CRISPR: Researchers seek ways to minimize off-target effects,” Genetic Engineering and Biotechnology News , June 22, 2017, https://www.genengnews.com/gen-exclusives/fixing-crispr/77900928, accessed September 7, 2018.
44Phys.org, “CRISPR gene editing can cause hundreds of unintended mutations,” May 29, 2017, https://phys.org/news/2017-05-crispr-gene-hundreds-unintended-mutations.html, accessed September 7, 2018.
45 Chatsko, M., “Here’s why Editas Medicine fell as much as 15.7% today,” The Motley Fool, May 30, 2017, https://www.fool.com/investing/2017/05/30/heres-why-editas-medicine-fell-as-much-as-14-today.aspx, accessed September 7, 2018.
46 Kim, S.-T., Park, J., Kim, D., Kim, K., Bae, S., Schlesner, M., and Kim, J.-S., “Questioning unexpected CRISPR off-target mutations in vivo,” Nature Methods , 2018, 15: 239240.
47 Wilson, C. J., Fennell, T., Bothmer, A., Maeder, M. L., Reyon, D., Cotta-Ramusino, C., and Fernandez, C. A. et al. , “The experimental design and data interpretation in ‘Unexpected mutations after CRISPR-Cas9 editing in vivo’ by Schaefer et al. are insufficient to support the conclusions drawn by the authors,” bioRxiv, June 21, 2017, https://www.biorxiv.org/content/biorxiv/early/2017/06/21/153338.full.pdf, accessed September 7, 2018.
48 Lareau, C. A., Clement, K., Hsu, J. Y., Pattanayak, V., Joung, J. K., Aryee, M. J., and Pinello, L., “‘Unexpected mutations after CRISPR-Cas9 editing in vivo’ are mostly likely pre-existing sequence variants and not nuclease-induced mutations,” Nature Methods , 2018, 15: 238239.
49Intellia, “Intellia’s response to Nature Methods article on CRISPR Cas-9,” June 6, 2017, https://ir.intelliatx.com/news-releases/news-release-details/intellias-response-nature-methods-article-crisprcas9, accessed September 7, 2018.
50 Haydon, I., “CRISPR study reporting ‘off-target mutations’ draws skepticism from other researchers,” Genetic Literacy Project, June 2, 2017, https://geneticliteracyproject.org/2017/06/02/crispr-study-reporting-off-target-mutations-draws-skepticism-researchers/, accessed September 7, 2018.
51 Nutter, L. M. J., Heaney, J. D., Lloyd, K. C. K., Murray, S. A., Seavitt, J. R., Skarnes, W. C., and Teboul, L. et al. , “Response to ‘Unexpected mutations after CRISP-Cas9 editing in vivo,’ ” Nature Methods , 2018, 15: 235236.
52 Lescarbeau, R. M., Murray, B., Barnes, T. M., and Bermingham, N., “Response to ‘Unexpected mutations after CRISPR-Cas9 editing in vivo,’ ” Nature Methods , 2018, 15: 237.
53 Wilson, C. J., Fennell, T., Bothmer, A., Maeder, M. L., Revon, D., Cotta-Ramusino, C., and Fernandez, C. A. et al. , “Response to ‘Unexpected mutations after CRISPR-Cas9 editing in vivo,’ ” Nature Methods , 2018, 15: 236237.
54 Knoepfler, P., “Journal club review of new CRISPR ‘lots of off-target activity’ mouse paper,” The Niche: Knoepfler Lab Stem Cell Blog , May 31, 2017, https://ipscell.com/2017/05/journal-club-review-of-new-crispr-lots-of-off-target-activity-mouse-paper/, accessed September 7, 2018.
55See https://www.nature.com/nmeth/journal/v14/n6/full/nmeth.4293.html - correction1, accessed September 7, 2018.
56 Schaefer, K. A., Wu, W.-H., Darbro, B. W., Colgan, D. F., Tsang, S. H., Bassuk, A. G., and Mahajan, V. B., “Response to Editas and Intellia: Unexpected mutations after CRISPR-Cas9 editing in vivo,” bioRxiv, July 23, 2017, https://www.biorxiv.org/content/early/2017/07/23/154450, accessed September 7, 2018.
57 Han, A. P., “Controversial CRISPR paper earns second editorial note,” Retraction Watch, July 26, 2017, http://retractionwatch.com/2017/07/26/controversial-crispr-paper-earns-second-editorial-note/, accessed September 7, 2018.
58“CRISPR off-targets: A reassessment,” Nature Methods, 2018, 15: 229–230.
59International Workshop Assessing the Security Implications of Genome Editing Technology, Hanover, Germany, October 11–13, 2017.
60 Kosicki, M., Tomberg, K., and Bradley, A., “Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements,” Nature Biotechnology , 2018, 36(8): 765771.
61 Haapaniemi, E., Botla, S., Persson, J., Schmierer, B., and Taipale, J., “CRISPR-Cas9 genome editing induces a p53 mediated DNA damage response,” Nature Medicine , 2018, 24: 927930.
62 Ihry, R. et al. , “P53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells,” Nature Medicine , 2018, 24: 939946.
63S. Begley “Potential DNA damage from CRISPR has been ‘seriously underestimated,”’ study finds,” STAT, July 16, 2018, https://www.statnews.com/2018/07/16/crispr-potential-dna-damage-underestimated/, accessed September 7, 2018.
64 O’Green, H., Yu, A. S., and Sega, D. J., “How specific is CRISPR/Cas9 really?,” Current Opinion in Chemical Biology , 2015, 29: 7278.
65 Chapman, J. E., Gillum, D., and Kiani, S., “Approaches to reduce CRISPR off-target effects for safer genome editing,” Applied Biosafety: Journal of ABSA International , 2017, 22(1): 713.
66 Kentaro, I. et al. , “Minimizing off-target mutagenesis risks caused by programmable nucleases,” International Journal of Molecular Science , 2015, 16: 2475124771.
67 Chuai, G.-H., Wang, Q.-L., and Liu, Q., “In silico meets in vivo: Towards computational CRISPR-based sgRNA design,” Trends in Biotechnology , 2017, 35(1): 1221.
68 Zischewski, J., Rainer, F., and Luisa, B., “Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases,” Biotechnology Advances , 2017, 35: 95104.
69 Lee, C. M. et al. , “Nuclease target site selection for maximizing on-target activity and minimizing off-target effects in genome editing,” Molecular Therapy , 2016, 24: 475487.
70 Tsai, S. Q. et al. , “GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases,” Nature Biotechnology , 2015, 33: 187197.
71 Kim, D., Bae, S., Park, J., Kim, E., Kim, S., Yu, H. R., Hwang, J., Kim, J.-I., and Kim, J.-S., “Digenome-seq: Genome-wide profiling of CRISPR-Cas9 off-target effects in human cells,” Nature Methods , 2015, 12(3): 237243.
72 Zhao, H. and Wolt, J. D., “Risk associated with off-target plant genome editing and methods for its limitation,” Emerging Topics in Life Sciences , 2017, 1: 231240.
73 Molteni, M., “A flawed study shows how little we understand CRISPR’s effects,” Wired , April 2, 2018, https://www.wired.com/story/a-flawed-study-shows-how-little-we-understand-crisprs-effects/, accessed September 7, 2018.
74 Akcakaya, P., Bobbin, M. L., and Guo, J. A. et al. , “In vivo CRISPR-Cas gene editing with no detectable genome-wide off-target mutations,” bioRxiv, https://www.biorxiv.org/content/biorxiv/early/2018/02/27/272724.full.pdf?%3Fcollection=, accessed September 7, 2018.
75 Gao, Y. et al. , “Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects,” Genome Biology , 2017, 18: 13.
76 Baltes, N. J. and Voytas, D. F., “Enabling plant synthetic biology through genome engineering,” Trends in Biotechnology , 2015, 33(2): 120131.
77 Chen, J. S., Dagdas, Y. S., Kleinstiver, B. P., Welch, M. M., Sousa, A. A., Harrington, L. B., and Sternberg, S. H. et al. , “Enhanced proofreading governs CRISPR-Cas9 targeting accuracy,” Nature , 2017, 550: 407410.
78 Shin, J., Jiang, F., Liu, J.-J., Bray, N. L., Rauch, B. J., Baik, S. H., and Nogales, E. et al. , “Disabling Cas9 by an anti-CRISPR DNA mimic,” Science Advances , 12 July 2017, 3(7): e1701620.
79 Ledford, H., “CRISPR, the disruptor,” Nature , 2015, 522(7554): 2024.
80 Thompson, N. C. and Zyontz, S., “Who tries (and who succeeds) in staying at the forefront of science — Evidence from DNA-editing technology, CRISPR,” working paper, November 2017, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3073227, accessed September 7, 2018.
81 Ouagrham-Gormley, S. B. and Vogel, Kathleen M., “The social context shaping bioweapons (non)proliferation,” Biosecurity and Bioterrorism: Biodefense Strategy, Practice, and Science , 2010, 8(1): 924.
82Discussion with U.S. intelligence official, McLean, Virginia, March 8, 2018.
83 Mukunda, G., Oye, K. A., and Mohr, S. C., “What rough beast?,” Politics and the Life Sciences , 2009, 28(2): 226.
84 Kosuri, S. and Church, G. M., “Large scale de novo DNA synthesis: Technologies and applications,” Nature Methods , 2014, 11(5): 499507.
85Devin Leake, “DNA synthesis steps up,” Genetic Engineering and Biotechnology News, 2016, 36(8), https://www.genengnews.com/gen-articles/dna-synthesis-steps-up/5743, accessed September 7, 2018.
86 Gardner, T. S., “Synthetic biology: From hype to impact,” Trends in Biotechnology , 2013, 31(3): 123125.
87 Czar, M. J., Anderson, J. C., Bader, J. S., and Peccoud, J., “Gene synthesis demystified,” Trends in Biotechnology , February 2009, 27(2): 6372, https://doi.org/10.1016/j.tibtech.2008.10.007.
88 Andrianantoandro, E., “Manifesting synthetic biology,” Trends in Biotechnology , 2015, 33(2): 56.
89 Zakari, B. and Carr, P., “The limits of synthetic biology,” Trends in Biotechnology , 2015, 33(2): 5758.
90 Pretorius, I. S., “Synthetic genome engineering forging new frontiers for wine yeast,” Critical Reviews in Biotechnology , 2017, 37(1): 112136.
91 Annaluru, N., Ramalingam, S., and Chandrasegaran, S., “Rewriting the blueprint of life by synthetic genomics and genome engineering,” Genome Biology , 2015, 16(1): 112.
92 Baker, M., “Is there a reproducibility crisis?,” Nature , 2016, 533: 452.
93 Hines, W. C., Su, Y., Kuhn, I., Polyak, K., and Bissell, M. J., “Sorting out the FACS: A devil in the details,” Cell , 2014, 6(5): 779781, https://doi.org/10.1016/j.celrep.2014.02.021.
94 Lightgow, G., Driscoll, M., and Phillips, P., “A long journey to reproducible results,” Nature , 2017, 548(7668): 387388.
95 Gao, F., Shen, X. Z., Jiang, F., Wu, Y., and Han, C., “DNA-guided genome editing using the Natronobacterium gregoryi Argonaute,” Nature Biotechnology , 2016, 34(7): 768773.
96 Cyranoski, D., “Replications, ridicule and a recluse: the controversy over NgAgo gene-editing intensifies,” Nature , 2016, 536(7615): 136137.
97 Lee, S. H., Turchiano, G., Ata, H., Nowsheetn, S., Romito, M., Lou, Z., and Ryu, S.-M. et al. , “Failure to detect DNA-guided genome editing using Natronobacterium gregoryi Argonaute,” Nature Biotechnology , 2016, 35: 1718.
99 Burgess, S., Cheng, L., and Gu, F. et al. , “Questions about NgAgo,” Protein Cell , 2016, 7(12): 913915, https://doi.org/10.1007/s13238-016-0343-9.
100 Chi Khin, Nay et al. , “No evidence for genome editing in mouse zygotes and HEK293T human cell line using the DNA-guided Natronobacterium gregoryi Argonaute (NgAgo),” PLOS ONE , 2017, 12(6): e0178768.
101 Qi, J., Dong, Z., Shi, Y., Wang, X., Qin, Y., Wang, Y., and Liu, D., “NgAgo-based fabp11a gene knockdown causes eye developmental defects in zebrafish,” Cell Research , 2016, 26: 13491352.
102“Time for the data to speak,” Nature Biotechnology, 2017, 35(8): 689.
103 Cyranoski, D., “Authors retract controversial NgAgo gene-editing study,” Nature , August 3, 2017, https://www.nature.com/news/authors-retract-controversial-ngago-gene-editing-study-1.22412,accessed September 7, 2018.
104 Collins, H. M., Changing Order: Replication and Induction in Scientific Practice (Chicago: University of Chicago Press, 1985), pp. 2978.
105 Lynch, Michael, Art and Artifact in Laboratory Science: A Study of Shop Work and Shop Talk in a Research Laboratory (London: Routledge & Kegan Paul, 1985).
106 Jordan, K. and Lynch, M., “The sociology of a Genetic engineering technique: Ritual and rationality in the performance of the ‘plasmid prep,’ ” in The Right Tools for the Job: At Work in the Twentieth Century Science, Clarke, A. E. and Fujimura, J. H., eds. (Princeton, NJ: Princeton University Press, 1992), pp. 77114.
107 Baker, M., “Reproducibility: Respect your cells!,” Nature , 2016, 537: 433435.
108 Cetina, K. K., The Manufacture of Knowledge (Oxford: Pergamon, 1981).
109 Latour, B. and Woolgar, S., Laboratory Life (Princeton, NJ: Princeton University Press, 1986).
110 Hacking, I., Representing and Intervening (Cambridge: Cambridge University Press, 1983).
111 Radder, H., “Normative reflexions on constructivist approaches to science and technology,” Social Studies of Science , 1992, 22: 141173.
112 Lo, M., “Genetic mutation in mice treatable with CRISPR-Gold gene editing technology,” The Daily Californian , October 14, 2017, http://www.dailycal.org/2017/10/04/genetic-mutation-mice-treatable-crispr-gold-gene-editing-technology/, accessed September 7, 2018.
113 Andrew, J., CRISPR hits a snag: Our immune systems may attack the treatment,” STAT, January 8, 2018,https://www.statnews.com/2018/01/08/immunity-crispr-cas9/, accessed September 7, 2018.
114 Wang, Z., Pan, Q., Gendron, P., Zhu, W., Guo, F., Cen, S., Wainberg, M. A., and Liang, C., “CRISPR/Cas9-Derived Mutations Both Inhibit HIV-1 Replication and Accelerate Viral Escape,” Cell , 2016, 15(3): 481489.
115 Akst, J., “Gene drive limitations,” The Scientist , October 9, 2017, https://www.the-scientist.com/the-nutshell/gene-drive-limitations-30776, accessed September 7, 2018.
116 Vogel, K. M., “Bioweapons proliferation: Where science studies and public policy collide,” Social Studies of Science , 2006, 36(5): 659690.
117 Ouagrham-Gormley, S. B., Barriers to Bioweapons: The Challenges of Expertise and Organization for Weapons Development (Ithaca, NY: Cornell University Press, 2014).
118 Patrick, W. C. III, “The threat of biological warfare,” Washington Roundtable on Science and Public Policy, February 13, 2001, http://www.ideasinactiontv.com/tcs_daily/2001/10/the-threat-of-biological-warfare.html, accessed September 7, 2018.
119For a description of this project, see http://www.synbioproject.org/library/inventories/map/.
120European Commission, “Synbiology: An analysis of synthetic biology research in Europe and North America. European Commission Framework Programme 6 Reference Contract 15357 (NEST),” 2005, http://www.haseloff-lab.org/resources/SynBio_reports/D11—Final-Report.pdf.
121 Van Est, R., de Vriend, H., and Walhout, B., Constructing Life: The World of Synthetic Biology (The Hague: Rathenau Instituut, 2007), pp. 78, https://www.researchgate.net/publication/265265346_Constructing_Life_The_World_of_Synthetic_Biology.
122ERASynBio, “Next steps for European synthetic biology: A strategic vision from ERASynBio ERASynBio,” 2014, http://www.erasynbio.eu/lw_resource/datapool/_items/item_59/erasynbiostrategicvision.pdf, accessed September 7, 2018.
123 Molyneux-Hodgson, S. and Meyer, M., “Tales of emergence — Synthetic biology as a scientific community in the making,” BioSocieties , 2009, 4(2/3): 129145.
124 Oldham, P., Hall, S., and Burton, G., “Synthetic biology: Mapping the scientific landscape,” PLOS ONE , 2012, 7(4): 116.
125 Cortada, J. W., The Digital Flood (Oxford: Oxford University Press, 2012).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Politics and the Life Sciences
  • ISSN: 0730-9384
  • EISSN: 1471-5457
  • URL: /core/journals/politics-and-the-life-sciences
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed