Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-21T23:26:47.276Z Has data issue: false hasContentIssue false

Rietveld structural refinement of «A» type phosphostrontium carbonate hydroxyapatites

Published online by Cambridge University Press:  14 November 2013

Sonia Jebri
Affiliation:
Tunis El Manar University, Faculty of Science, Chemistry Department, Applied Thermodynamics Laboratory, 2092, Tunis El Manar, Tunisia.
Habib Boughzala*
Affiliation:
Tunis El Manar University, Faculty of Science, Chemistry Department, Laboratory of Crystallochemistry and Materials, 2092, Tunis El Manar, Tunisia.
Ali Bechrifa
Affiliation:
Tunis El Manar University, Faculty of Science, Chemistry Department, Applied Thermodynamics Laboratory, 2092, Tunis El Manar, Tunisia.
Mohamed Jemal
Affiliation:
Tunis El Manar University, Faculty of Science, Chemistry Department, Applied Thermodynamics Laboratory, 2092, Tunis El Manar, Tunisia.
*
Corresponding author: Habib Boughzala. Tel: (216) 20523595; fax: (216) 72220181 E-mail: habib.boughzala@ipein.rnu.tn

Abstract

Phosphostrontium carbonate hydroxyapatites having the general formula Sr10(PO4)6(OH)(2-2x)(CO3)x were prepared by solid gas reaction at different temperatures in the range 0 ≤ x ≤ 1. Infrared spectroscopy investigation reveals a carbonate groups substituting hydroxyl ions. Intensity bands increasing with the carbonate amount introduced in the lattice, while the one corresponding to hydroxyl decreases until disappearance. The Rietveld refinement of the structural model using X-ray powder diffraction patterns is used to determine the substitution rate. It was quantified by the refinement of the occupancy sites affected by the substitution. The crystallographic study shows the evolution of the atomic coordinate in the apatite due to the carbonate incorporation. The variation of the main interatomic distances and the bond angles was also discussed.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Badraoui, B., Aissa, A., Bigi, A., Debbabi, M. and Gazzano, M. (2009). Mater. Res. Bull. 44, 522530.CrossRefGoogle Scholar
Bonel, G. (1972). “Contribution à l'étude de la carbonation des apatites,” Ann. Chim. 7, 127144.Google Scholar
Coelho, A. A. (2009). TOPAS, version 4.2 (Computer Software), Coelho Software, Brisbane.Google Scholar
Combes, C. and Rey, C. (2010). “Amorphous calcium phosphates: Synthesis, properties and uses in biomaterials,” Acta Biomater. 6, 33623378.CrossRefGoogle ScholarPubMed
Elliott, J. C. (1994). Structure and Chemistry of the Apatites and Other Calcium Ortophosphates (Studies in Inorganic Chemistry), (Elsevier, Amsterdam), Vol. 18.Google Scholar
El Feki, H., Naddari, T., Savariault, J. M. and Ben Sala, A. (2000). “Localization of potassium in substituted lead hydroxyapatite: Pb9.30K0.60(PO4)6(OH)1.20 by X-ray diffraction,” Solid State. Sci. 2,725733.CrossRefGoogle Scholar
El Feki, H., Savariault, J. M. and Ben Salah, A. (1999). “Structure refinements by the Rietveld method of partially substituted hydroxyapatite,” J. Alloys Compd. 287, 114120.CrossRefGoogle Scholar
Bruker-AXS (2008). Diffracplus Evaluation package EVA 14, Release 15 (Computer Software) Bruker AXS GmbH Karlsruhe, Germany.Google Scholar
Hamdi, B., El Feki, H., Savariault, J. M., and Ben Salah, A. (2007). Mater. Res. Bull. 42:299311.CrossRefGoogle Scholar
ICDD (2010). Powder Diffraction File Inorganic and Organic Data Book, edited by Kabekkodu, Dr. Soorya (International Centre for Diffraction Data, Newtown Square, PA USA), Set 60.Google Scholar
Jebri, S., Boughzala, H., Bechrifa, A. and Jemal, M. (2011a) “Structural analysis and thermochemistry of “A” type phosphostrontium carbonate hydroxyapatites,” J. Therm. Anal. Calorim. DOI 10.1007/s10973-011-1598-2.Google Scholar
Jebri, S., Bechrifa, A. and Jemal, M. (2011b). “Standard enthalpies of formation of “A” type carbonate phosphobaryum hydroxyapatites,” J. Therm. Anal. Calorim. 2011b. DOI 10.1007/s10973-011-1794-0.Google Scholar
Khattech, I. (1996). “Synthèse, caractérisation et étude thermochimique de phosphates à base de métaux alcalino-terreux,” PhD Thesis. Tunis El Manar University, Tunisia.Google Scholar
Lafon, J. P., Champion, E. and Bernache-Assollant, D. (2008). “Processing of AB-type carbonated hydroxyapatite Ca10-x(PO4)6-x(CO3)x(OH)2-x-2y(CO3)y ceramics with controlled composition,” J. Eur. Ceram. Soc. 28, 139147.CrossRefGoogle Scholar
Mahabole, M. P., Aiyer, R. C., Ramakrishna, C. V., Sreedhar, B. and Khairnar, R. S. (2005). “Synthesis, characterization and gas sensing property of hydroxyapatite ceramic,” Bull. Mater. Sci. 28(6), 535545.CrossRefGoogle Scholar
Manon, B., Popovic, L. and de Waal, D. S. M. C. (2003). “Verryn.,” Powder Diffr. 18, 122127.Google Scholar
Nagai, M., Nishino, T. and Saeki, T. (1988). “A new type of CO2 gas sensor comprising porous hydroxyapatite ceramics,” Sensors Actuators 15, 145151 CrossRefGoogle Scholar
Rietveld, H. M. (1967). “Line Profiles of Neutron Powder-diffraction Peaks for Structure Refinements,” Acta. Crystallogr., 22, 151–2.CrossRefGoogle Scholar
Rakovan, J. F. and Hughes, J. M. (2000). “Strontium in the apatite structure: structure and chemistry of belovite-(Ce) and Sr-rich apatiteCanadian Mineral. 38, 839845.CrossRefGoogle Scholar
Roux, P. and Bonel, G. (1977). “Sur la préparation de l'apatite carbonatée de type A à haute température par évolution, sous pression de gaz carbonique,” Ann. Chim. Sci. Mater. 2, 159165.Google Scholar
Sudarsanan, K. and Young, R. A. (1982) “Structural derivation and crystal chemistry of apatites,” Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. (24,1968-38).Google Scholar
Takeda, H., Seki, Y., Nakamura, S., and Yamshita, K. (2002). “Evaluation of electrical polarizability and in vitro bioactivity of apatite Sr5(PO4)3OH dense ceramics,” J. Mater. Chem. 12, 24902495.CrossRefGoogle Scholar
Younesi, M. and Bahrololoom, M. E. (2009). “Effect of temperature and pressure of hot pressing on the mechanical properties of PP-HA bio-composites,” Mater. Des. 30, 3482–348CrossRefGoogle Scholar