Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T00:57:12.072Z Has data issue: false hasContentIssue false

X-ray powder diffraction reference patterns for Bi1−xPbxOCuSe

Published online by Cambridge University Press:  04 July 2016

W. Wong-Ng*
Affiliation:
Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Y. Yan
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
J.A. Kaduk
Affiliation:
Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616
X.F. Tang
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
*
a)Author to whom correspondence should be addressed. Electronic mail: winnie.wong-ng@nist.gov

Abstract

The structures and powder X-ray reference diffraction patterns of the “natural superlattice” series Bi1−xPbxOCuSe (x = 0, 0.02, 0.04, 0.06, 0.08, and 0.10) have been investigated. As the ionic radius of Pb2+ is greater than that of Bi3+, the unit-cell volume of Bi1−xPbxOCuSe increases progressively from x = 0 to 0.1, namely, from 137.868(5) to 139.172(11) Å3, as expected. The structure of Bi1−xPbxOCuSe is built from [Bi2(1−x)Pb2xO2]2(1−x)+ layers normal to the c-axis alternating with [Cu2Se2]2(1−x)− fluorite-like layers. Pb substitution in the Bi site of Bi1−xPbxOCuSe leads to the weakening of the “bonding” between the [Bi2(1−x)Pb2xO2]2(1−x)+ and the [Cu2Se2]2(1−x)− layers. Powder patterns of Bi1−xPbxOCuSe were submitted to be included in the Powder Diffraction File.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antipov, E. and D'yachenko, O. (1993) PDF 00-045-296, International Centre for Diffraction Data, 12 Campus Blvd., Newtown Squares, PA 19073-3273, USA.Google Scholar
Boller, H. (1973). “Die Kristallstruktur von Bi2O2Se,” Monatsh, Chem. 104, 916.Google Scholar
Charkin, D. O., Akopyan, A. V., and Dolgikh, V. A. (1999). “New oxochalcogenides of rare-earth elements with the stucture of LaOAgS,” Russ. J. Inorg. Chem. 44, 833.Google Scholar
Dolgikh, V. A. and Kholodkovskaya, L. N. (1992). “Crystal chemistry of layered metal oxyhalides and oxychalcogenides (sillen phases),” Zh. Neorg. Khim. 37(5), 970985.Google Scholar
Grebille, D., Lambert, S., Bourée, F., and Petricek, V. (2004). “Contribution of powder diffraction for structure refinements of aperiodic misfit cobalt oxides,” J. Appl. Crystallogr. 37, 823831.Google Scholar
Hiramatsu, H., Yanagi, H., Kamiya, T., Ueda, K., Hirano, M., and Hosono, H. (2008). “Crystal structure, optoelectronic properties, and electronic structures of layered oxychalcogenides MCuOCh (M = Bi, La; Ch = S, Se, Te): effects of electronic configurations of M3+ ions,” Chem. Mater. 20, 326334.Google Scholar
Howard, C. J. (1982). “The approximation of asymmetric neutron powder diffraction peaks by sums of Gaussians,” J. Appl. Crystallogr. 15(6), 615620.Google Scholar
Kusainova, A. M., Berdonosov, P. S., Akselrud, L. G., Kholodkovskaya, L. N., Dolgikh, V. A., and Popovkin, B. A. (1994). “New layered compounds with the general composition (MO)(CuSe), where M = Bi, Nd, Gd, Dy, and BiOCuS: synthesis and crystal structure,” J. Solid State Chem. 112, 189191.Google Scholar
Larson, A. C. and von Dreele, R. B. (2004). General Structure Analysis System (GSAS) (Los Alamos National Laboratory Report LAUR 86-748). Los Alamos, USA.Google Scholar
Luu, S. D. N. and Vaquelro, P. (2013). “Synthesis, structural characterization and thermoelectric properties of Bi1−x Pb x OCuSe,” J. Mater. Chem A 1, 1227012275.Google Scholar
Masset, A. C., Michel, C., Maignan, A., Hervieu, M., Toulemonde, O., Studer, F., and Raveau, B. (2000). “Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9 ,” Phys. Rev. B 62, 166175.Google Scholar
Mikami, H., Itaka, K., Kawaji, H., Wang, Q. J., Koinuma, H., and Lippmaa, M. (2002). “Rapid synthesis and characterization of (Ca1−x Ba x )3Co4O9 thin films using combinatorial methods,” Appl. Surf. Sci. 197, 442447.Google Scholar
Otani, M., Lowhorn, N. D., Schenck, P. K., Wong-Ng, W., and Green, M. (2007). “A high-throughput thermoelectric screening tool for rapid construction of thermoelectric phase diagrams,” Appl. Phys. Lett. 91, 132102.Google Scholar
Palazzi, M. (1981). “Préparation el affinement de la structure de (LaO)CuS,” Acad. Sci., Paris, C.R. Ser. II 292, 789.Google Scholar
Palazzi, M. and Jaulmes, J. (1981). “Structure du Conducteur Ionique (LaO)AgS,” Acta Crystallogr. B 37, 1337.Google Scholar
Palazzi, M., Carcaly, C., and Flahaut, J. (1980). “Un nouveau conducteur ionique (LaO)AgS Original Research Article,” J. Solid State Chem. 35, 150.Google Scholar
PDF, Powder Diffraction File (2015). Produced by International Centre for Diffraction Data, 12 Campus Blvd., Newtown Squares, PA 19073-3273, USA.Google Scholar
Popovkin, B. A., Kusainova, A. M., Dolgikh, V. A., and Aksel'rud, L. G. (1998). “New layered phases of the MOCuX (M = Ln, Bi; X = S, Se, Te) family: a geometric approach to the explanation of phase stability,” Russ. J. Inorg. Chem. 43, 1471.Google Scholar
Richard, A. P., Russell, J. A., Zaktuayev, A., Zakharov, L. N., Keszler, D. A., and Tate, J. (2012). “Synthesis, structure, and optical proeprties of BiCuOCh (Ch=S, Se, and Te),” J. Solid State Chem. 187, 1519.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.Google Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomie distances in halides and chalcogenides,” Acta Crystallogr. A 32, 751767.Google Scholar
Su, X., Fu, F., Yan, Y., Zheng, G., Liang, Q., Cheng, X., Yang, D., Chi, H., Tang, X., Zhang, Q., and Uher, C. (2014). “Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing,” Nat. Commun. 5, 4908.Google Scholar
Takase, K., Sato, K., Shoji, O., Takahashi, Y., Takano, Y., Sekizawa, K., Kuroiwa, Y., and Goto, M. (2007). “Charge density distribution of transparent p-type semiconductor (LaO)CuS,” Appl. Phys. Lett. 90, 161916.Google Scholar
Terasaki, I., Sasago, Y., and Uchinokura, K. (1997). “Large thermoelectric power in NaCo2O4 single crystals”, Phys. Rev. B 56, 1268512687.Google Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3 ”, J. Appl. Crystallogr. 20, 7983.Google Scholar
Tritt, T. M. and Subramanian, M. A. (guest editors) (2006). Harvesting Energy through Thermoelectrics: Power Generation and Cooling (MRS Bulletin, Materials Research Soc.), Materials Research Society, 506 Keystone Dr, Warrendale, PA 15086, pp. 188195.Google Scholar
Ueda, K. and Hosono, H. (2002). “Band gap engineering, band edge emission, and p-type conductivity in wide-gap LaCuOS1−x Se x oxychalcogenides,” J. Appl. Phys. 91, 4768.Google Scholar
Ueda, K., Inoue, S., Hirose, S., Kawazoe, H., and Hosono, H. (2000). “Transparent p-type semiconductor: LaCuOS layered oxysulfide,” Appl. Phys. Lett. 77, 2701.Google Scholar
Ueda, K., Takafuji, K., Hiramatsu, H., Ohta, , Kamiya, T., Hirano, M., and Hosono, H. (2003). “Electrical and optical properties and electronic structures of LnCuOS (Ln = La–Nd),” Chem. Mater., 15, 3692.Google Scholar
Wang, S., Venimadhav, A., Guo, S., Chen, K., Li, Q., Soukiassian, A., Schlom, D. G., Pan, X. Q., Wong-Ng, W., Vaudin, M. D., Cahill, D. G., and Xi, X. X. (2009). “Structural and thermoelectric properties of Bi2Sr2Co2O y thin films on LaAlO3 (100) and fused silica substrates,” Appl. Phys. Lett. 94, 022110.Google Scholar
Wong-Ng, W., Hu, Y. F., Vaudin, M. D., He, B., Otani, M., Lowhorn, N. D., and Li, Q. (2007). “Texture analysis of a Ca3Co4O9 thermoelectric film on Si (100) substrate,” J. Appl. Phys. 102(3), 33520.Google Scholar
Wong-Ng, W., Liu, G., Martin, J., Thomas, E., Lowhorn, N., and Otani, M. (2010). “Phase compatibility of the thermoelectric compounds in the Sr–Ca–Co–O system,” J. Appl. Phys. 107, 033508.Google Scholar
Zhu, W. J., Huang, Y. Z., Dong, C., and Zhao, Z. X. (1994). “Synthesis and crystal structure of new rare-earth copper oxyselenides: RCuSeO (R=La, Sm, Gd and Y),” Mater. Res. Bull. 29, 143.Google Scholar